全文获取类型
收费全文 | 300篇 |
免费 | 16篇 |
专业分类
316篇 |
出版年
2023年 | 2篇 |
2022年 | 2篇 |
2021年 | 4篇 |
2020年 | 2篇 |
2019年 | 3篇 |
2018年 | 3篇 |
2017年 | 4篇 |
2016年 | 8篇 |
2015年 | 15篇 |
2014年 | 9篇 |
2013年 | 23篇 |
2012年 | 26篇 |
2011年 | 17篇 |
2010年 | 21篇 |
2009年 | 20篇 |
2008年 | 25篇 |
2007年 | 12篇 |
2006年 | 19篇 |
2005年 | 14篇 |
2004年 | 9篇 |
2003年 | 9篇 |
2002年 | 14篇 |
2001年 | 10篇 |
2000年 | 3篇 |
1999年 | 6篇 |
1998年 | 3篇 |
1997年 | 2篇 |
1995年 | 1篇 |
1994年 | 1篇 |
1993年 | 2篇 |
1992年 | 1篇 |
1991年 | 2篇 |
1990年 | 1篇 |
1989年 | 4篇 |
1987年 | 3篇 |
1985年 | 1篇 |
1982年 | 2篇 |
1981年 | 6篇 |
1980年 | 1篇 |
1979年 | 4篇 |
1977年 | 1篇 |
1968年 | 1篇 |
排序方式: 共有316条查询结果,搜索用时 15 毫秒
51.
52.
Selvaraj Rajakumar Nagaraj Bhanupriya Chidambaram Ravi Vasanthi Nachiappan 《Cell stress & chaperones》2016,21(5):895-906
The endoplasmic reticulum is the key organelle which controls protein folding, lipid biogenesis, and calcium (Ca2+) homeostasis. Cd exposure in Saccharomyces cerevisiae activated the unfolded protein response and was confirmed by the increased Kar2p expression. Cd exposure in wild-type (WT) cells increased PC levels and the PC biosynthetic genes. Deletion of the two phospholipid methyltransferases CHO2 and OPI3 modulated PC, TAG levels and the lipid droplets with cadmium exposure. Interestingly, we noticed an increase in the calcium levels upon Cd exposure in the mutant cells. This study concluded that Cd interrupted calcium homeostasis-induced lipid dysregulation leading to ER stress. 相似文献
53.
54.
Lakshmi Prabha Nagaraj Govindappa Laxmi Adhikary Ramakrishnan Melarkode Kedarnath Sastry 《Protein expression and purification》2009,64(2):155-161
Exendin-4 is a naturally occurring 39 amino acid peptide that is useful for the control of Type 2 diabetes. Recombinant Exendin-4, with an extra glycine at the carboxy-terminus (Exdgly), was expressed in the methylotropic yeast Pichia pastoris. A high proportion of the Exdgly molecules secreted into medium were found to be clipped, lacking the first two amino acids (His–Gly) from the N-terminus. Disruption of the P. pastoris homolog of the Saccharomyces cerevisiae dipeptidyl aminopeptidase (STE13) gene in Pichia genome resulted in a clone that expressed N-terminally intact Exdgly. Elimination of N-terminal clipping enhanced the yield and simplified the purification of Exdgly from P. pastoris culture supernatant. 相似文献
55.
Elaine O. Nsoesie Richard J. Beckman Sara Shashaani Kalyani S. Nagaraj Madhav V. Marathe 《PloS one》2013,8(6)
Reliable forecasts of influenza can aid in the control of both seasonal and pandemic outbreaks. We introduce a simulation optimization (SIMOP) approach for forecasting the influenza epidemic curve. This study represents the final step of a project aimed at using a combination of simulation, classification, statistical and optimization techniques to forecast the epidemic curve and infer underlying model parameters during an influenza outbreak. The SIMOP procedure combines an individual-based model and the Nelder-Mead simplex optimization method. The method is used to forecast epidemics simulated over synthetic social networks representing Montgomery County in Virginia, Miami, Seattle and surrounding metropolitan regions. The results are presented for the first four weeks. Depending on the synthetic network, the peak time could be predicted within a 95% CI as early as seven weeks before the actual peak. The peak infected and total infected were also accurately forecasted for Montgomery County in Virginia within the forecasting period. Forecasting of the epidemic curve for both seasonal and pandemic influenza outbreaks is a complex problem, however this is a preliminary step and the results suggest that more can be achieved in this area. 相似文献
56.
57.
Conformation and activity of delta-lysin and its analogs 总被引:1,自引:0,他引:1
Delta-Lysin is a 26-residue hemolytic peptide secreted by Staphylococcus aureus. Unlike the bee venom peptide melittin, delta-lysin does not exhibit antibacterial activity. We have synthesized delta-lysin and several analogs wherein the N-terminal residues of the toxin were sequentially deleted. The toxin has three aspartic acids, four lysines and no prolines. Analogs were also generated in which all the aspartic acids were replaced with lysines. A proline residue was introduced in the native sequences as well as in the analogs where aspartic acids were replaced with lysines. We observed that 20- and 22-residue peptides corresponding to residues 7-26 and 5-26 of delta-lysin, respectively, had greater hemolytic activity than the parent peptide. These shorter peptides, unlike delta-lysin, did not self-associate to adopt alpha-helical conformation in water, at lytic concentrations. Introduction of proline or substitution of aspartic acids by lysines resulted in loss in propensity to adopt helical conformation in water. When proline was introduced in the peptides corresponding to the native toxin sequence, loss of hemolytic activity was observed. Substitution of all the aspartic acids with lysines resulted in enhanced hemolytic activity in all the analogs. However, when both proline and aspartic acid to lysine changes were made, only antibacterial activity was observed in the shorter peptides. Our investigations on delta-lysin and its analogs provide insights into the positioning of anionic, cationic residues and proline in determining hemolytic and antibacterial activities. 相似文献
58.
59.
N Pasupuleti S Matsuyama O Voss A I Doseff K Song D Danielpour R H Nagaraj 《Cell death & disease》2010,1(3):e31
αA-crystallin is a molecular chaperone and an antiapoptotic protein. This study investigated the mechanism of inhibition of apoptosis by human αA-crystallin and determined if the chaperone activity of αA-crystallin is required for the antiapoptotic function. αA-crystallin inhibited chemical-induced apoptosis in Chinese hamster ovary (CHO) cells and HeLa cells by inhibiting activation of caspase-3 and -9. In CHO cells, it inhibited apoptosis induced by the overexpression of human proapoptotic proteins, Bim and Bax. αA-crystallin inhibited doxorubicin-mediated activation of human procaspase-3 in CHO cells and it activated the PI3K/Akt cell survival pathway by promoting the phosphorylation of PDK1, Akt and phosphatase tensin homologue in HeLa cells. The phosphoinositide 3 kinase (PI3K) activity was increased by αA-crystallin overexpression but the protein content was unaltered. Downregulation of PI3K by the expression of a dominant-negative mutant or inhibition by abrogated the ability of αA-crystallin to phosphorylate Akt. These antiapoptotic functions of αA-crystallin were enhanced in a mutant protein (R21A) that shows increased chaperone activity than the wild-type (Wt) protein. Interestingly, a mutant protein (R49A) that shows decreased chaperone activity was far weaker than the Wt protein in its antiapoptotic functions. Together, our study results show that αA-crystallin inhibits apoptosis by enhancing PI3K activity and inactivating phosphatase tensin homologue and that the antiapoptotic function is directly related to its chaperone activity. LY294002相似文献
60.
Chemotherapy is a very important therapeutic strategy for cancer treatment. The failure of conventional and molecularly targeted chemotherapeutic regimes for the treatment of pancreatic cancer highlights a desperate need for novel therapeutic interventions. Chemotherapy often fails to eliminate all tumor cells because of intrinsic or acquired drug resistance, which is the most common cause of tumor recurrence. Overexpression of RAD51 protein, a key player in DNA repair/recombination has been observed in many cancer cells and its hyperexpression is implicated in drug resistance. Recent studies suggest that RAD51 overexpression contributes to the development, progression and drug resistance of pancreatic cancer cells. Here we provide a brief overview of the available pieces of evidence in support of the role of RAD51 in pancreatic tumorigenesis and drug resistance, and hypothesize that RAD51 could serve as a potential biomarker for diagnosis of pancreatic cancer. We discuss the possible involvement of RAD51 in the drug resistance associated with epithelial to mesenchymal transition and with cancer stem cells. Finally, we speculate that targeting RAD51 in pancreatic cancer cells may be a novel approach for the treatment of pancreatic cancer. 相似文献