首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4048篇
  免费   435篇
  2022年   32篇
  2021年   65篇
  2020年   56篇
  2019年   60篇
  2018年   59篇
  2017年   58篇
  2016年   102篇
  2015年   162篇
  2014年   198篇
  2013年   235篇
  2012年   285篇
  2011年   277篇
  2010年   192篇
  2009年   144篇
  2008年   248篇
  2007年   221篇
  2006年   195篇
  2005年   172篇
  2004年   153篇
  2003年   142篇
  2002年   146篇
  2001年   73篇
  2000年   70篇
  1999年   76篇
  1998年   55篇
  1997年   49篇
  1996年   43篇
  1995年   43篇
  1994年   40篇
  1993年   33篇
  1992年   42篇
  1991年   53篇
  1990年   45篇
  1989年   51篇
  1988年   36篇
  1987年   46篇
  1986年   43篇
  1985年   43篇
  1984年   46篇
  1983年   29篇
  1982年   32篇
  1981年   22篇
  1980年   29篇
  1979年   28篇
  1978年   15篇
  1977年   24篇
  1975年   17篇
  1974年   30篇
  1973年   30篇
  1972年   14篇
排序方式: 共有4483条查询结果,搜索用时 15 毫秒
21.
An overlap between subpopulations of nerve growth factor (NGF)-responsive and capsaicin-sensitive dorsal root ganglion (DRG) sensory neurons has been suggested from a number of in vivo studies. To examine this apparent link in more detail, we compared the effects of capsaicin on adult rat DRG neurons cultured in the presence or absence of NGF. Capsaicin sensitivity was assessed histochemically by a cobalt staining method, by measuring capsaicin-induced 45Ca2+ uptake, and by electrophysiological recording of capsaicin-evoked membrane currents. When cultured with NGF, approximately 50% of these adult DRG neurons were capsaicin-sensitive, whereas adult sympathetic neurons or ganglionic nonneuronal cells were insensitive. DRG cultures grown in the absence of NGF, however, were essentially unresponsive to capsaicin. Capsaicin sensitivity could be regained fully within 4-6 days of replacement of NGF. These results indicate that, at least in vitro, NGF can modify the capsaicin sensitivity of adult DRG neurons.  相似文献   
22.
S Zhang  C Lockshin  A Herbert  E Winter    A Rich 《The EMBO journal》1992,11(10):3787-3796
A putative Z-DNA binding protein, named zuotin, was purified from a yeast nuclear extract by means of a Z-DNA binding assay using [32P]poly(dG-m5dC) and [32P]oligo(dG-Br5dC)22 in the presence of B-DNA competitor. Poly(dG-Br5dC) in the Z-form competed well for the binding of a zuotin containing fraction, but salmon sperm DNA, poly(dG-dC) and poly(dA-dT) were not effective. Negatively supercoiled plasmid pUC19 did not compete, whereas an otherwise identical plasmid pUC19(CG), which contained a (dG-dC)7 segment in the Z-form was an excellent competitor. A Southwestern blot using [32P]poly(dG-m5dC) as a probe in the presence of MgCl2 identified a protein having a molecular weight of 51 kDa. The 51 kDa zuotin was partially sequenced at the N-terminal and the gene, ZUO1, was cloned, sequenced and expressed in Escherichia coli; the expressed zuotin showed similar Z-DNA binding activity, but with lower affinity than zuotin that had been partially purified from yeast. Zuotin was deduced to have a number of potential phosphorylation sites including two CDC28 (homologous to the human and Schizosaccharomyces pombe cdc2) phosphorylation sites. The hexapeptide motif KYHPDK was found in zuotin as well as in several yeast proteins, DnaJ of E.coli, csp29 and csp32 proteins of Drosophila and the small t and large T antigens of the polyoma virus. A 60 amino acid segment of zuotin has similarity to several histone H1 sequences. Disruption of ZUO1 in yeast resulted in a slow growth phenotype.  相似文献   
23.
In the course of studies on local keratin phenotypes in the epidermis of the adult mouse, we have identified a new 65 kD and 48 kD keratin pair. In mouse skin, this keratin pair is only expressed in suprabasal cells of adult mouse tail scale epidermis which is characterized by the complete absence of a granular layer and the formation of a remarkably compact stratum corneum. A second site in which the 65 kD and 48 kD keratin pair is suprabasally expressed and whose morphology corresponds to that of tail scale epidermis is found in the posterior unit of the complex filiform papillae of mouse tongue. The causal relationship of the expression of the 65 kD and 48 kD keratins with this particular type of a non-pathological epithelial parakeratosis is emphasized by the suppression of the mRNA synthesis of the two keratins during retinoic acid mediated orthokeratotic conversion of tail scale epidermis. Apart from tail scale epidermis and the posterior unit of the filiform papillae, the 65 kD and 48 kD keratin pair is, however, also coexpressed with "hard" alpha keratins in suprabulbar cells of hair follicles and in suprabasal cells of the central core unit of the lingual filiform papillae. The non alpha-helical domains of the two new keratins are rich in cysteine and proline residues and lack the typical subdomains into which epithelial keratins of both types can be divided. This structural resemblance of the 65 kD and 48 kD keratins to "hard" alpha keratins is supported by comparative flexibility predictions for their non alpha-helical domains. Phylogenetic investigations then show that the 65 kD and 48 kD keratin pair has evolved together with hair keratins, but has diverged from these during evolution to constitute an independent branch of a pair of hair-related keratins. In view of this exceptional position of the 65 kD and 48 kD keratins within the keratin multigene family, their expression has apparently been adopted by rare anatomical sites in which an orthokeratinized stratum corneum would be too soft and a hard keratinized structure would be too rigid to meet the functional requirement of the respective epithelia.  相似文献   
24.
25.
Summary Gossypium hirsutum L. var. Delta Pine 61 was cultivated in controlled-environment chambers at 1000–1100 mol photosynthetically active photons m-2 s-1 (medium photon flux density) and at 1800–2000 mol photons m-2 s-1 (high photon flux density), respectively. Air temperatures ranged from 20° to 34°C during 12-h light periods, whereas during dark periods temperature was 25° C in all experiments. As the leaf temperature decreased from about 33° to 27° C, marked reductions in dry matter production, leaf chlorophyll content and photosynthetic capacity occurred in plants growing under high light conditions, to values far below those in plants growing at 27° C and medium photon flux densities. The results show that slightly suboptimum temperatures, well above the so-called chilling range (0–12° C), greatly reduce dry matter production in cotton when combined with high photon flux densities equivalent to full sunlight.Abbreviations DW dry weight - F v variable fluorescence yield - F M maximum fluorescence yield - PFD photon flux density (400–700 nm)  相似文献   
26.
4-Methyleneglutamine amidohydrolase has been extracted and purified over 1000-fold from 14-day-old peanut (Arachis hypogaea) leaves by modification of methods described previously. The purified enzyme shows two bands of activity and three to four bands of protein after electrophoresis on nondenaturing gels. Each of the active bands is readily eluted from gel slices and migrates to its original position on subsequent electrophoresis. Although they are electrophoretically distinct, the two forms of the enzyme are immunologically identical by Ouchterlony double-diffusion techniques and have similar catalytic properties. Activity toward glutamine that has a threefold lower Vmax and a four-fold higher Km value copurifies with MeGln aminohydrolase activity. 4-Methyleneglutamine and 4-methyleneglutamic acid inhibit the hydrolysis of glutamine while glutamine inhibits 4-methyleneglutamine hydrolysis, further indicating the identity of the activity toward both substrates. Amidohydrolase activity is stimulated up to threefold by preincubation with either ionic or non-ionic detergents (0.1%) and also by added proteins (0.5% bovine serum albumin or whole rabbit serum); it is inhibited 50% by 1 millimolar borate or the glutamine analog, albizziin (10 millimolar). Rabbit antiserum to the purified peanut enzyme cross-reacts with one or more proteins in extracts of some plants but not others; in no instance, however, was 4-methyleneglutamine amidohydrolase activity detected in other species. Overall, the results support the hypothesis that 4-methyleneglutamine supplies N, via its hydrolysis by the amidohydrolase, to the growing shoots of peanut plants, whereas glutamine hydrolysis is prevented by the prepon-derance of the preferred substrate. Some results also suggest that this amidohydrolase activity may be regulated by metabolites and/or by association with other cellular components.  相似文献   
27.
Simultaneous measurements of net CO2 exchange, water vapor exchange, and leaf water relations were performed in Mesembryanthemum crystallinum during the development of crassulacean acid metabolism (CAM) in response to high NaCl salinity in the rooting medium. Determinations of chlorophyll a fluorescence were used to estimate relative changes in electron transport rate. Alterations in leaf mass per unit area, which—on a short-term basis—largely reflect changes in water content, were recorded continuously with a beta-gauge. Turgor pressure of mesophyll cells was determined with a pressure probe. As reported previously (K Winter, DJ von Willert [1972] Z Pflanzenphysiol 67: 166-170), recently expanded leaves of plants grown under nonsaline conditions showed gas-exchange characteristics of a C3 plant. Although these plants were not exposed to any particular stress treatment, water content and turgor pressure regularly decreased toward the end of the 12 hour light periods and recovered during the following 12 hours of darkness. When the NaCl concentration of the rooting medium was raised to 400 millimolar, in increments of 100 millimolar given at the onset of the photoperiods for 4 consecutive days, leaf water content and turgor pressure decreased by as much as 30 and 60%, respectively, during the course of the photoperiods. These transient decreases probably triggered the induction of the biochemical machinery which is required for CAM to operate. After several days at 400 millimolar NaCl, when leaves showed features typical of CAM, overall turgor pressure and leaf mass per unit area had increased above the levels before onset of the salt treatment, and diurnal alterations in leaf water content were reduced. Net carbon gain during photoperiods and average intercellular CO2 partial pressures at which net CO2 uptake occurred, progressively decreased upon salinization. Reversible diurnal depressions in leaf conductance and net CO2 uptake, with minima recorded in the middle of the photoperiods, preceded the occurrence of nocturnal net CO2 uptake. During these reductions, intercellular CO2 partial pressure and rates of photosynthetic electron transport decreased. With advancing age, leaves of plants grown under nonsaline conditions exhibited progressively greater diurnal reductions in turgor pressure and developed a low degree of CAM activity.  相似文献   
28.
Summary A series of experiments has established the molecular defect in the medium-chain acyl-coenzyme A (CoA) dehydrogenase (MCAD) gene in a family with MCAD deficiency. Demonstration of intra-mitochondrial mature MCAD indistinguishable in size (42.5-kDa) from control MCAD, and of mRNA with the correct size of 2.4 kb, indicated a point-mutation in the coding region of the MCAD gene to be disease-causing. Consequently, cloning and DNA sequencing of polymerase chain reaction (PCR) amplified complementary DNA (cDNA) from messenger RNA of fibroblasts from the patient and family members were performed. All clones sequenced from the patient exhibited a single base substitution from adenine (A) to guanine (G) at position 985 in the MCAD cDNA as the only consistent base-variation compared with control cDNA. In contrast, the parents contained cDNA with the normal and the mutated sequence, revealing their obligate carrier status. Allelic homozygosity in the patient and heterozygosity for the mutation in the parents were established by a modified PCR reaction, introducing a cleavage site for the restriction endonuclease NcoI into amplified genomic DNA containing G985. The same assay consistently revealed A985 in genomic DNA from 26 control individuals. The A to G mutation was introduced into an E. coli expression vector producing mutant MCAD, which was demonstrated to be inactive, probably because of the inability to form active tetrameric MCAD. All the experiments are consistent with the contention that the G985 mutation, resulting in a lysine to glutamate shift at position 329 in the MCAD polypeptide chain, is the genetic cause of MCAD deficiency in this family. We found the same mutation in homozygous form in 11 out of 12 other patients with verified MCAD deficiency.  相似文献   
29.
An autosomal dominant form of adolescent multinodular goiter.   总被引:2,自引:1,他引:1       下载免费PDF全文
Eighteen members of an extended pedigree have been found to have a form of euthyroid adolescent multinodular goiter. Histological examination showed multiple adenomata with areas of epithelial hyperplasia, hemorrhage, and calcification. In two subjects there were focal areas of epithelial hyperplasia reminiscent of low-grade papillary carcinoma, but capsular and vascular invasion was not found. The pattern of inheritance appeared to be autosomal dominant, with diminished penetrance in males. Although the patients were euthyroid, the likely basis for this disorder is an abnormality in thyroglobulin structure and function.  相似文献   
30.
The synthesis of a steroid desmolase was demonstrated in two obligate anaerobes: a new bacterial species, Eubacterium desmolans, isolated from cat fecal flora, and Clostridium cadavaris, recovered from sewage of New York City. The enzyme cleaves the C-17-C-20 bond of corticoids possessing hydroxyl functions at C-17 and C-21. The conversion is quantitative, provided the substrate concentration is less than 100 micrograms/ml and the organisms are in the log phase. The velocity of transformation parallels the bacterial growth curve and in the log phase is higher for E. desmolans than for C. cadavaris. In addition, both organisms synthesize a 20 beta-hydroxysteroid dehydrogenase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号