全文获取类型
收费全文 | 2419篇 |
免费 | 202篇 |
专业分类
2621篇 |
出版年
2023年 | 7篇 |
2022年 | 20篇 |
2021年 | 46篇 |
2020年 | 27篇 |
2019年 | 30篇 |
2018年 | 36篇 |
2017年 | 31篇 |
2016年 | 75篇 |
2015年 | 111篇 |
2014年 | 146篇 |
2013年 | 160篇 |
2012年 | 204篇 |
2011年 | 208篇 |
2010年 | 142篇 |
2009年 | 103篇 |
2008年 | 182篇 |
2007年 | 145篇 |
2006年 | 146篇 |
2005年 | 117篇 |
2004年 | 104篇 |
2003年 | 99篇 |
2002年 | 100篇 |
2001年 | 28篇 |
2000年 | 26篇 |
1999年 | 23篇 |
1998年 | 31篇 |
1997年 | 26篇 |
1996年 | 23篇 |
1995年 | 18篇 |
1994年 | 14篇 |
1993年 | 11篇 |
1992年 | 12篇 |
1991年 | 10篇 |
1990年 | 12篇 |
1989年 | 7篇 |
1988年 | 6篇 |
1987年 | 10篇 |
1986年 | 9篇 |
1985年 | 8篇 |
1984年 | 7篇 |
1981年 | 11篇 |
1980年 | 6篇 |
1979年 | 5篇 |
1977年 | 5篇 |
1976年 | 7篇 |
1973年 | 8篇 |
1972年 | 7篇 |
1969年 | 7篇 |
1968年 | 6篇 |
1967年 | 7篇 |
排序方式: 共有2621条查询结果,搜索用时 46 毫秒
21.
22.
Surface hydrolysis of sphingomyelin by the outer membrane protein Rv0888 supports replication of Mycobacterium tuberculosis in macrophages 下载免费PDF全文
Alexander Speer Jim Sun Olga Danilchanka Virginia Meikle Jennifer L. Rowland Kerstin Walter Bradford R. Buck Mikhail Pavlenok Christoph Hölscher Sabine Ehrt Michael Niederweis 《Molecular microbiology》2015,97(5):881-897
Sphingomyelinases secreted by pathogenic bacteria play important roles in host–pathogen interactions ranging from interfering with phagocytosis and oxidative burst to iron acquisition. This study shows that the Mtb protein Rv0888 possesses potent sphingomyelinase activity cleaving sphingomyelin, a major lipid in eukaryotic cells, into ceramide and phosphocholine, which are then utilized by Mtb as carbon, nitrogen and phosphorus sources, respectively. An Mtb rv0888 deletion mutant did not grow on sphingomyelin as a sole carbon source anymore and replicated poorly in macrophages indicating that Mtb utilizes sphingomyelin during infection. Rv0888 is an unusual membrane protein with a surface‐exposed C‐terminal sphingomyelinase domain and a putative N‐terminal channel domain that mediated glucose and phosphocholine uptake across the outer membrane in an M. smegmatis porin mutant. Hence, we propose to name Rv0888 as SpmT (sp hingomyelinase of M ycobacterium t uberculosis). Erythrocyte membranes contain up to 27% sphingomyelin. The finding that Rv0888 accounts for half of Mtb's hemolytic activity is consistent with its sphingomyelinase activity and the observation that Rv0888 levels are increased in the presence of erythrocytes and sphingomyelin by 5‐ and 100‐fold, respectively. Thus, Rv0888 is a novel outer membrane protein that enables Mtb to utilize sphingomyelin as a source of several essential nutrients during intracellular growth. 相似文献
23.
Nuria Albet-Torres Marieke J. Bloemink Tom Barman Robin Candau Kerstin Fr?lander Michael A. Geeves Kerstin Golker Christian Herrmann Corinne Lionne Claudia Piperio Stephan Schmitz Claudia Veigel Alf M?nsson 《The Journal of biological chemistry》2009,284(34):22926-22937
Amrinone is a bipyridine compound with characteristic effects on the force-velocity relationship of fast skeletal muscle, including a reduction in the maximum shortening velocity and increased maximum isometric force. Here we performed experiments to elucidate the molecular mechanisms for these effects, with the additional aim to gain insight into the molecular mechanisms underlying the force-velocity relationship. In vitro motility assays established that amrinone reduces the sliding velocity of heavy meromyosin-propelled actin filaments by 30% at different ionic strengths of the assay solution. Stopped-flow studies of myofibrils, heavy meromyosin and myosin subfragment 1, showed that the effects on sliding speed were not because of a reduced rate of ATP-induced actomyosin dissociation because the rate of this process was increased by amrinone. Moreover, optical tweezers studies could not detect any amrinone-induced changes in the working stroke length. In contrast, the ADP affinity of acto-heavy meromyosin was increased about 2-fold by 1 mm amrinone. Similar effects were not observed for acto-subfragment 1. Together with the other findings, this suggests that the amrinone-induced reduction in sliding velocity is attributed to inhibition of a strain-dependent ADP release step. Modeling results show that such an effect may account for the amrinone-induced changes of the force-velocity relationship. The data emphasize the importance of the rate of a strain-dependent ADP release step in influencing the maximum sliding velocity in fast skeletal muscle. The data also lead us to discuss the possible importance of cooperative interactions between the two myosin heads in muscle contraction.Muscle contraction, as well as several other aspects of cell motility, results from cyclic interactions between myosin II motors and actin filaments. These force-generating interactions are driven by the hydrolysis of ATP at the myosin active site as outlined in Scheme 1 (1–3). In the absence of actin, the Pi and ADP release steps (k4 and k5) are rate-limiting for the entire cycle at high (>12 °C) and low temperatures, respectively (4–6). In the presence of actin, the rate of Pi release increases significantly, and the overall cycle is accelerated more than 2 orders of magnitude. The sliding velocity of myosin-propelled motors is generally believed to be rate-limited by actomyosin dissociation (rate constant k′5, k′6, or k′2 in Scheme 1) (7). Alternatively, some studies (8, 9) have suggested that the sliding velocity is determined by the fraction of myosin heads in the weak-binding states, AM4 ATP and AM ADP Pi. However, it is worth emphasizing that KT is very low under physiological conditions (1, 3) with low population of these states. For the same reason, the rate of dissociation of the AM complex is governed by K′1 and k′2.Open in a separate windowSCHEME 1.Simplified kinetics scheme for MgATP turnover by myosin (lower row) and actomyosin (upper row). Inorganic phosphate is denoted by Pi; MgATP is denoted by ATP, and MgADP is denoted by ADP; myosin is denoted by M. The states AM*ADP and AM ADP correspond to myosin heads with their nucleotide binding pocket in a partially closed and open conformation, respectively (7, 52). Rate constants are indicated by lowercase letters (rightward transitions, k2 − k5 and k′2 − k′5, or leftward transitions, k−2 − k−5 and k′−2 − k′−5) and equilibrium constants by uppercase letters (K1, K′1, KT, K3, K′3, K6, k′6, and KDP). The equilibrium constants are association constants except for simple bimolecular reactions where they are defined as ki/k−i.For the study of contractile mechanisms in both muscle and other types of cells, drugs may be useful as pharmacological tools affecting different transitions or states in the force-generating cycle. Whereas the use of drugs as tools may be less specific than site-directed mutagenesis, it also has advantages. The motor protein function may be studied in vivo, with maintained ordering of the protein components, e.g. as in the muscle sarcomere, allowing more insight into the relationship between specific molecular events and contractile properties of muscle. A drug that has been used quite extensively in this context is butanedione monoxime. The usefulness of this drug is based on firm characterization of its effect on actomyosin function on the molecular level (3, 10–13). More recently other drugs, like N-benzyl-p-toluene sulfonamide (14, 15) and blebbistatin (16), have been found to affect myosin function, and their effects at the molecular level have also been elucidated in some detail (14, 15, 17, 18). Both these drugs appear to affect the actomyosin interaction in a similar way as butanedione monoxime by inhibiting a step before (or very early in) the myosin power stroke, leading to the inhibition of actomyosin cross-bridge formation and force production.In contrast to the reduced isometric force, caused by the above mentioned drugs, the bipyridine compound amrinone (Fig. 1A) has been found to increase the isometric force production of fast intact skeletal muscles of the frog (19, 20) and mouse (21) and also of fast (but much less slow) skinned muscle fibers of the rat (22). In all the fast myosin preparations, the effect of about 1 mm amrinone on isometric force was associated with characteristic changes of the force-velocity relationship (Fig. 1B), including a reduced maximum velocity of shortening (19–22) and a reduced curvature of the force-velocity relationship (19–22). The latter effect was accompanied (20, 21) by a less pronounced deviation of the force-velocity relationship from the hyperbolic shape (23) at high loads. There have been different interpretations of the drug effects. It has been proposed (20–22) that amrinone might competitively inhibit the MgATP binding by myosin. However, more recently, results from in vitro motility assay experiments (24) challenged this idea. These results showed that amrinone reduces the sliding velocity (Vmax) at saturating MgATP concentrations but not at MgATP concentrations close to, or below, the Km value for the hyperbolic relationship between MgATP concentration and sliding velocity. Such a combination of effects is consistent with a reduced MgADP release rate (24) but not with competitive inhibition of substrate binding. However, effects of amrinone on the MgADP release rate have not been directly demonstrated. Additionally, in view of the uncertainty about what step actually determines the sliding velocity at saturating [MgATP] (see above and Refs. 7–9), it is of interest to consider other possible drug effects that could account for the data of Klinth et al. (24). These include the following: 1) an increased drag force, e.g. because of enhancement of weak actomyosin interactions; 2) a reduced step length; and 3) effects of the drug on the rate of MgATP-induced dissociation of actomyosin.Open in a separate windowFIGURE 1.A, structure of amrinone. B, experimental force-velocity data obtained in the presence (filled symbols) and absence (open symbols) of 1.1 mm amrinone. The data, from intact single frog muscle fibers, were obtained at 2 °C and fitted by Hill''s (42) hyperbola (lines) for data truncated at 80% of the maximum isometric force. Filled line, equation fitted to control data, a/P0* = 0.185; P0*/P0 = 1.196. Dashed line, amrinone, a/P0* = 0.347; P0*/P0 = 1.009. Force-velocity data were obtained in collaboration with Professor K. A. P. Edman. Same data as in Fig. 8 of Ref. 20. Note a decrease in maximum sliding velocity and curvature of the force-velocity relationship at low force, in response to amrinone. Also note that amrinone caused increased isometric force and a reduced deviation of the force-velocity relationship from the Hill''s hyperbola at high force. All changes of the force-velocity relationship were statistically significant (20), and similar changes were later also observed in intact mouse muscle and skinned rat muscle fibers. Data in Fig. 1 are published by agreement with Professor K. A. P. Edman.To differentiate between these hypotheses for the amrinone effects, and to gain more general insight into fundamental aspects of muscle function (e.g. mechanisms underlying the force-velocity relationship), we here study the molecular effects of amrinone on fast skeletal muscle myosin preparations in the presence and absence of actin.In vitro motility assay studies at different ionic strengths suggest that drag forces, caused by increased fraction of myosin heads in weak binding states, are not important for the effect of amrinone on sliding velocity. Likewise, optical tweezers studies showed no effect of the drug on the myosin step length. Finally, ideas that amrinone should reduce sliding velocity by reduced rate of MgATP-induced dissociation could be discarded because the drug actually increased the rate of this process. Instead, we found an amrinone-induced increase in the MgADP affinity of heavy meromyosin (HMM) in the presence of actin. Interestingly, similar effects of amrinone were not observed using myosin S1. As discussed below, this result and other results point to an amrinone-induced reduction in the rate of a strain-dependent MgADP release step. Simulations, using a model modified from that of Edman et al. (25), support this proposed mechanism of action. The results are discussed in relation to fundamental mechanisms underlying the force-velocity relationship of fast skeletal muscle, including which step determines shortening velocity and the possible importance of inter-head cooperativity. 相似文献
24.
25.
The structure of bovine F1-ATPase inhibited with ADP and beryllium fluoride at 2.0 angstroms resolution contains two ADP.BeF3- complexes mimicking ATP, bound in the catalytic sites of the beta(TP) and beta(DP) subunits. Except for a 1 angstrom shift in the guanidinium of alphaArg373, the conformations of catalytic side chains are very similar in both sites. However, the ordered water molecule that carries out nucleophilic attack on the gamma-phosphate of ATP during hydrolysis is 2.6 angstroms from the beryllium in the beta(DP) subunit and 3.8 angstroms away in the beta(TP) subunit, strongly indicating that the beta(DP) subunit is the catalytically active conformation. In the structure of F1-ATPase with five bound ADP molecules (three in alpha-subunits, one each in the beta(TP) and beta(DP) subunits), which has also been determined, the conformation of alphaArg373 suggests that it senses the presence (or absence) of the gamma-phosphate of ATP. Two catalytic schemes are discussed concerning the various structures of bovine F1-ATPase. 相似文献
26.
27.
28.
Water channels in Chara corallina 总被引:4,自引:0,他引:4
Water relations parameters ofChara corallina inter-nodes weremeasured using the single cell pressure probe. The effect ofmercurials, which are recognized as non-specific water channelinhibitors, was examined. HgCl2 concentrations greater than5 mmol m3 were found to inhibit hydraulic conductivity{Lp) close to 90%, whereas pCMPS was found to have no effecton Lp. The activation energy of water flow was increased significantlyfrom 21.0 kJ mol1 to 45.6 kJ mol1, following theapplication of HgCl2. These results are in accordance with evidencefor Hg2+sensitive water channels in the plasma membrane of charophytes(Henzler and Steudle, 1995; Tazawa et al., 1996). The metaboliceffects must, however, be considered in view of the rapid inhibitionof respiration and the depolarization of the membrane potentialwith HgCl2 concentrations lower than those found to affect Lp.It was possible to measure simultaneously water relations andmembrane PD, in order to examine the contribution of potassiumchannels to Lp. Cells were induced into a K+ permeable state.The K+ channels, assumed to be open, were subsequently blockedby various blockers. No significant difference in Lp was foundfor any of these treatments. Finally, the permeability of C.corallina membranes to ethanol was examined. HgCl2 was foundto cause a decrease in reflection coefficient, coinciding witha decrease in Lp, but there was no change in the ethanol permeabilitycoefficient. This has been interpreted in terms of both thefrictional model and composite model of non-electrolyte membranetransport. Key words: Water channels, Chara, hydraulic, conductivity, membrane transport models, reflection coefficient 相似文献
29.
Superoxide dismutase, catalase and nitrogenase activities of symbiotic Frankia (Alnus incana) in response to different oxygen tensions 总被引:2,自引:0,他引:2
Presence and activity of the enzymes superoxide dismutase (SOD) and catalase were studied in Frankia in symbiosis with Alnus incana (L.) Moench. Analysis on native PAGE gels indicated that symbiotic Frankia contained an FeSOD and catalase. The activity of the enzymes was in the same range as reported for cultured Frankia . Attempts to characterize SOD by western blots with antisera from Escherichia coli and Azotobacter vinelandii did not give clear-cut results with the antibodies used. Alnus incana plants were grown with the root system in 5, 10, 21 or 40% O2 for up to 6 days. Nitrogenase activity, measured as ARA (acetylene reducing activity) dropped within 3 h when roots were exposed to low or high oxygen. At 40% O2 ARA was almost completely lost while at 5 and 10% O2 ARA decreased to 69 and 74% of the inital value, respectively, Nitrogenase activity recovered at ail oxygen tensions. Recovery rates resembled the continuous increase in ARA in plants continuosly kept at 21% O2 , and suggests that new vesicles with envelopes of appropriate thickness were formed. The ARA measurements confirm results from an earlier study where nitrogenase activity was measured as H2 evolution. There was a tendency for increased SOD and catalase activities in Frankia from root systems exposed to 40% O2 for 24 h but not earlier or later than this. When data from all experimental times were pooled. SOD activity increased significantly with increased oxygen tension whereas catalase activity decreased. Although ARA per plant varied with oxygen tension, there was no statistically significant correlation between ARA and SOD or between ARA and catalase. It seems that being linked to nitrogenase activity is only one role of SOD and catalase in this symbiotic Frankia . 相似文献
30.