首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3488篇
  免费   310篇
  3798篇
  2023年   10篇
  2022年   32篇
  2021年   51篇
  2020年   32篇
  2019年   43篇
  2018年   47篇
  2017年   50篇
  2016年   96篇
  2015年   139篇
  2014年   204篇
  2013年   212篇
  2012年   266篇
  2011年   274篇
  2010年   175篇
  2009年   134篇
  2008年   218篇
  2007年   195篇
  2006年   195篇
  2005年   171篇
  2004年   147篇
  2003年   156篇
  2002年   137篇
  2001年   76篇
  2000年   75篇
  1999年   64篇
  1998年   52篇
  1997年   41篇
  1996年   37篇
  1995年   34篇
  1994年   30篇
  1993年   27篇
  1992年   33篇
  1991年   29篇
  1990年   27篇
  1989年   22篇
  1988年   24篇
  1987年   18篇
  1986年   21篇
  1985年   16篇
  1984年   17篇
  1982年   11篇
  1981年   16篇
  1980年   9篇
  1979年   15篇
  1978年   11篇
  1977年   8篇
  1976年   11篇
  1975年   21篇
  1974年   13篇
  1973年   12篇
排序方式: 共有3798条查询结果,搜索用时 15 毫秒
31.
Hirschsprung disease is a congenital malformation affecting 1 in 5000 live births. The absence of parasympathetic neuronal ganglia (Meissner, Auerbach) in the hindgut results in poor coordination of peristaltic movement, and a varying degree of constipation. Four different genes have been implicated in the pathogenesis of Hirschsprung disease: the RET tyrosine kinase receptor gene; one of its ligands, the glial cell line-derived neurotrophic factor (GDNF) gene; the endothelin receptor B (EDNRB) gene; and its ligand, endothelin-3 (EDN3). Recently, combinations of mutations in two of these genes (RET and GDNF) have been reported in Hirschsprung patients. We report a family with missense mutations in both the RET gene (R982C) and the EDNRB gene (G57S). In this family, three out of five members have the two mutations, but only one, a boy, has the Hirschsprung disease phenotype. This illustrates the complexity of the molecular background of Hirschsprung disease. Received: 23 January 1998 / Accepted: 24 March 1998  相似文献   
32.
There is growing evidence of the active involvement of sleep in memory consolidation. Besides hippocampal sharp wave-ripple complexes and sleep spindles, slow oscillations appear to play a key role in the process of sleep-associated memory consolidation. Furthermore, slow oscillation amplitude and spectral power increase during the night after learning declarative and procedural memory tasks. However, it is unresolved whether learning-induced changes specifically alter characteristics of individual slow oscillations, such as the slow oscillation up-state length and amplitude, which are believed to be important for neuronal replay. 24 subjects (12 men) aged between 20 and 30 years participated in a randomized, within-subject, multicenter study. Subjects slept on three occasions for a whole night in the sleep laboratory with full polysomnography. Whereas the first night only served for adaptation purposes, the two remaining nights were preceded by a declarative word-pair task or by a non-learning control task. Slow oscillations were detected in non-rapid eye movement sleep over electrode Fz. Results indicate positive correlations between the length of the up-state as well as the amplitude of both slow oscillation phases and changes in memory performance from pre to post sleep. We speculate that the prolonged slow oscillation up-state length might extend the timeframe for the transfer of initial hippocampal to long-term cortical memory representations, whereas the increase in slow oscillation amplitudes possibly reflects changes in the net synaptic strength of cortical networks.  相似文献   
33.
34.
Sphingomyelinases secreted by pathogenic bacteria play important roles in host–pathogen interactions ranging from interfering with phagocytosis and oxidative burst to iron acquisition. This study shows that the Mtb protein Rv0888 possesses potent sphingomyelinase activity cleaving sphingomyelin, a major lipid in eukaryotic cells, into ceramide and phosphocholine, which are then utilized by Mtb as carbon, nitrogen and phosphorus sources, respectively. An Mtb rv0888 deletion mutant did not grow on sphingomyelin as a sole carbon source anymore and replicated poorly in macrophages indicating that Mtb utilizes sphingomyelin during infection. Rv0888 is an unusual membrane protein with a surface‐exposed C‐terminal sphingomyelinase domain and a putative N‐terminal channel domain that mediated glucose and phosphocholine uptake across the outer membrane in an M. smegmatis porin mutant. Hence, we propose to name Rv0888 as SpmT (sp hingomyelinase of M ycobacterium t uberculosis). Erythrocyte membranes contain up to 27% sphingomyelin. The finding that Rv0888 accounts for half of Mtb's hemolytic activity is consistent with its sphingomyelinase activity and the observation that Rv0888 levels are increased in the presence of erythrocytes and sphingomyelin by 5‐ and 100‐fold, respectively. Thus, Rv0888 is a novel outer membrane protein that enables Mtb to utilize sphingomyelin as a source of several essential nutrients during intracellular growth.  相似文献   
35.
Amrinone is a bipyridine compound with characteristic effects on the force-velocity relationship of fast skeletal muscle, including a reduction in the maximum shortening velocity and increased maximum isometric force. Here we performed experiments to elucidate the molecular mechanisms for these effects, with the additional aim to gain insight into the molecular mechanisms underlying the force-velocity relationship. In vitro motility assays established that amrinone reduces the sliding velocity of heavy meromyosin-propelled actin filaments by 30% at different ionic strengths of the assay solution. Stopped-flow studies of myofibrils, heavy meromyosin and myosin subfragment 1, showed that the effects on sliding speed were not because of a reduced rate of ATP-induced actomyosin dissociation because the rate of this process was increased by amrinone. Moreover, optical tweezers studies could not detect any amrinone-induced changes in the working stroke length. In contrast, the ADP affinity of acto-heavy meromyosin was increased about 2-fold by 1 mm amrinone. Similar effects were not observed for acto-subfragment 1. Together with the other findings, this suggests that the amrinone-induced reduction in sliding velocity is attributed to inhibition of a strain-dependent ADP release step. Modeling results show that such an effect may account for the amrinone-induced changes of the force-velocity relationship. The data emphasize the importance of the rate of a strain-dependent ADP release step in influencing the maximum sliding velocity in fast skeletal muscle. The data also lead us to discuss the possible importance of cooperative interactions between the two myosin heads in muscle contraction.Muscle contraction, as well as several other aspects of cell motility, results from cyclic interactions between myosin II motors and actin filaments. These force-generating interactions are driven by the hydrolysis of ATP at the myosin active site as outlined in Scheme 1 (13). In the absence of actin, the Pi and ADP release steps (k4 and k5) are rate-limiting for the entire cycle at high (>12 °C) and low temperatures, respectively (46). In the presence of actin, the rate of Pi release increases significantly, and the overall cycle is accelerated more than 2 orders of magnitude. The sliding velocity of myosin-propelled motors is generally believed to be rate-limited by actomyosin dissociation (rate constant k5, k6, or k2 in Scheme 1) (7). Alternatively, some studies (8, 9) have suggested that the sliding velocity is determined by the fraction of myosin heads in the weak-binding states, AM4 ATP and AM ADP Pi. However, it is worth emphasizing that KT is very low under physiological conditions (1, 3) with low population of these states. For the same reason, the rate of dissociation of the AM complex is governed by K1 and k2.Open in a separate windowSCHEME 1.Simplified kinetics scheme for MgATP turnover by myosin (lower row) and actomyosin (upper row). Inorganic phosphate is denoted by Pi; MgATP is denoted by ATP, and MgADP is denoted by ADP; myosin is denoted by M. The states AM*ADP and AM ADP correspond to myosin heads with their nucleotide binding pocket in a partially closed and open conformation, respectively (7, 52). Rate constants are indicated by lowercase letters (rightward transitions, k2k5 and k2k5, or leftward transitions, k−2k−5 and k−2k−5) and equilibrium constants by uppercase letters (K1, K1, KT, K3, K3, K6, k6, and KDP). The equilibrium constants are association constants except for simple bimolecular reactions where they are defined as ki/ki.For the study of contractile mechanisms in both muscle and other types of cells, drugs may be useful as pharmacological tools affecting different transitions or states in the force-generating cycle. Whereas the use of drugs as tools may be less specific than site-directed mutagenesis, it also has advantages. The motor protein function may be studied in vivo, with maintained ordering of the protein components, e.g. as in the muscle sarcomere, allowing more insight into the relationship between specific molecular events and contractile properties of muscle. A drug that has been used quite extensively in this context is butanedione monoxime. The usefulness of this drug is based on firm characterization of its effect on actomyosin function on the molecular level (3, 1013). More recently other drugs, like N-benzyl-p-toluene sulfonamide (14, 15) and blebbistatin (16), have been found to affect myosin function, and their effects at the molecular level have also been elucidated in some detail (14, 15, 17, 18). Both these drugs appear to affect the actomyosin interaction in a similar way as butanedione monoxime by inhibiting a step before (or very early in) the myosin power stroke, leading to the inhibition of actomyosin cross-bridge formation and force production.In contrast to the reduced isometric force, caused by the above mentioned drugs, the bipyridine compound amrinone (Fig. 1A) has been found to increase the isometric force production of fast intact skeletal muscles of the frog (19, 20) and mouse (21) and also of fast (but much less slow) skinned muscle fibers of the rat (22). In all the fast myosin preparations, the effect of about 1 mm amrinone on isometric force was associated with characteristic changes of the force-velocity relationship (Fig. 1B), including a reduced maximum velocity of shortening (1922) and a reduced curvature of the force-velocity relationship (1922). The latter effect was accompanied (20, 21) by a less pronounced deviation of the force-velocity relationship from the hyperbolic shape (23) at high loads. There have been different interpretations of the drug effects. It has been proposed (2022) that amrinone might competitively inhibit the MgATP binding by myosin. However, more recently, results from in vitro motility assay experiments (24) challenged this idea. These results showed that amrinone reduces the sliding velocity (Vmax) at saturating MgATP concentrations but not at MgATP concentrations close to, or below, the Km value for the hyperbolic relationship between MgATP concentration and sliding velocity. Such a combination of effects is consistent with a reduced MgADP release rate (24) but not with competitive inhibition of substrate binding. However, effects of amrinone on the MgADP release rate have not been directly demonstrated. Additionally, in view of the uncertainty about what step actually determines the sliding velocity at saturating [MgATP] (see above and Refs. 79), it is of interest to consider other possible drug effects that could account for the data of Klinth et al. (24). These include the following: 1) an increased drag force, e.g. because of enhancement of weak actomyosin interactions; 2) a reduced step length; and 3) effects of the drug on the rate of MgATP-induced dissociation of actomyosin.Open in a separate windowFIGURE 1.A, structure of amrinone. B, experimental force-velocity data obtained in the presence (filled symbols) and absence (open symbols) of 1.1 mm amrinone. The data, from intact single frog muscle fibers, were obtained at 2 °C and fitted by Hill''s (42) hyperbola (lines) for data truncated at 80% of the maximum isometric force. Filled line, equation fitted to control data, a/P0* = 0.185; P0*/P0 = 1.196. Dashed line, amrinone, a/P0* = 0.347; P0*/P0 = 1.009. Force-velocity data were obtained in collaboration with Professor K. A. P. Edman. Same data as in Fig. 8 of Ref. 20. Note a decrease in maximum sliding velocity and curvature of the force-velocity relationship at low force, in response to amrinone. Also note that amrinone caused increased isometric force and a reduced deviation of the force-velocity relationship from the Hill''s hyperbola at high force. All changes of the force-velocity relationship were statistically significant (20), and similar changes were later also observed in intact mouse muscle and skinned rat muscle fibers. Data in Fig. 1 are published by agreement with Professor K. A. P. Edman.To differentiate between these hypotheses for the amrinone effects, and to gain more general insight into fundamental aspects of muscle function (e.g. mechanisms underlying the force-velocity relationship), we here study the molecular effects of amrinone on fast skeletal muscle myosin preparations in the presence and absence of actin.In vitro motility assay studies at different ionic strengths suggest that drag forces, caused by increased fraction of myosin heads in weak binding states, are not important for the effect of amrinone on sliding velocity. Likewise, optical tweezers studies showed no effect of the drug on the myosin step length. Finally, ideas that amrinone should reduce sliding velocity by reduced rate of MgATP-induced dissociation could be discarded because the drug actually increased the rate of this process. Instead, we found an amrinone-induced increase in the MgADP affinity of heavy meromyosin (HMM) in the presence of actin. Interestingly, similar effects of amrinone were not observed using myosin S1. As discussed below, this result and other results point to an amrinone-induced reduction in the rate of a strain-dependent MgADP release step. Simulations, using a model modified from that of Edman et al. (25), support this proposed mechanism of action. The results are discussed in relation to fundamental mechanisms underlying the force-velocity relationship of fast skeletal muscle, including which step determines shortening velocity and the possible importance of inter-head cooperativity.  相似文献   
36.
37.
Abstract Indian meal moths, Plodia interpunctella Hübner (Lepidoptera: Pyralidae), have ears which are sensitive to high‐frequency calls produced by echolocating, insectivorous bats. The influence of artificially generated, high‐intensity, ultrasound signals (25 kHz, 106 dB SPL at 1 m distance) on different parameters involved in the odour‐mediated mating behaviour of this species and its potential use in population control was investigated. All moths flying towards olfactory cues in flight tunnel experiments reacted strongly to a 1 s ultrasound pulse by cessation of flight and falling out of the odour plume. The source contact proportion of both male moths orienting towards the female‐produced sex pheromone and of mated female moths orienting towards an oviposition cue was reduced by 40%, compared to unexposed moths. Calling females responded to the sound by retraction of the ovipositor or by falling to the ground. Long‐term exposure to repetitive pulses of ultrasound suppressed female calling by up to 27%. Furthermore, mating in plastic tents was disrupted by up to 58% in ultrasound‐treated tents using different sound regimens, compared to control tents. The results are discussed in relation to the potential use of ultrasound technology for the population control of pyralid stored product pests.  相似文献   
38.
The structure of bovine F1-ATPase inhibited with ADP and beryllium fluoride at 2.0 angstroms resolution contains two ADP.BeF3- complexes mimicking ATP, bound in the catalytic sites of the beta(TP) and beta(DP) subunits. Except for a 1 angstrom shift in the guanidinium of alphaArg373, the conformations of catalytic side chains are very similar in both sites. However, the ordered water molecule that carries out nucleophilic attack on the gamma-phosphate of ATP during hydrolysis is 2.6 angstroms from the beryllium in the beta(DP) subunit and 3.8 angstroms away in the beta(TP) subunit, strongly indicating that the beta(DP) subunit is the catalytically active conformation. In the structure of F1-ATPase with five bound ADP molecules (three in alpha-subunits, one each in the beta(TP) and beta(DP) subunits), which has also been determined, the conformation of alphaArg373 suggests that it senses the presence (or absence) of the gamma-phosphate of ATP. Two catalytic schemes are discussed concerning the various structures of bovine F1-ATPase.  相似文献   
39.
Gelatin zymography revealed the presence of proteolytic activity in conditioned medium (CM) from a serum-free, non-infected Spodoptera frugiperda, Sf9 insect cell culture. Two peptidase bands at about 49 and 39 kDa were detected and found to be proform and active form of the same enzyme. The 49-kDa form was visible on zymogram gels in samples of CM taken on days 4 and 5 of an Sf9 culture, while the 39-kDa form was seen on days 6 and 7. On basis of the inhibitor profile and substrate range, the enzyme was identified as an Sf9 homologue of cathepsin L, a papain-like cysteine peptidase. After lowering the pH of Sf9 CM to 3.5, an additional peptidase band at 22 kDa appeared. This peptidase showed the same inhibitor profile, substrate range and optimum pH (5.0) as the 39-kDa form, indicating that Sf9 cathepsin L has two active forms, at 39 and 22 kDa. Addition of the cysteine peptidase inhibitor E-64c to an Sf9 culture inhibited all proteolytic activities of Sf9 cathepsin L but did not influence the proliferation of Sf9 cells.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号