首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2451篇
  免费   206篇
  2023年   7篇
  2022年   21篇
  2021年   43篇
  2020年   28篇
  2019年   31篇
  2018年   34篇
  2017年   33篇
  2016年   77篇
  2015年   110篇
  2014年   147篇
  2013年   168篇
  2012年   214篇
  2011年   207篇
  2010年   144篇
  2009年   102篇
  2008年   183篇
  2007年   154篇
  2006年   145篇
  2005年   123篇
  2004年   109篇
  2003年   102篇
  2002年   102篇
  2001年   25篇
  2000年   23篇
  1999年   26篇
  1998年   32篇
  1997年   25篇
  1996年   22篇
  1995年   16篇
  1994年   15篇
  1993年   12篇
  1992年   11篇
  1991年   10篇
  1990年   12篇
  1989年   9篇
  1988年   8篇
  1987年   9篇
  1986年   12篇
  1985年   7篇
  1984年   10篇
  1983年   6篇
  1982年   5篇
  1981年   10篇
  1980年   6篇
  1979年   8篇
  1978年   5篇
  1976年   6篇
  1974年   5篇
  1973年   7篇
  1969年   4篇
排序方式: 共有2657条查询结果,搜索用时 15 毫秒
51.
Repair success for injuries to the flexor tendon in the hand is often limited by the in vivo behaviour of the suture used for repair. Common problems associated with the choice of suture material include increased risk of infection, foreign body reactions, and inappropriate mechanical responses, particularly decreases in mechanical properties over time. Improved suture materials are therefore needed. As high-performance materials with excellent tensile strength, spider silk fibres are an extremely promising candidate for use in surgical sutures. However, the mechanical behaviour of sutures comprised of individual silk fibres braided together has not been thoroughly investigated. In the present study, we characterise the maximum tensile strength, stress, strain, elastic modulus, and fatigue response of silk sutures produced using different braiding methods to investigate the influence of braiding on the tensile properties of the sutures. The mechanical properties of conventional surgical sutures are also characterised to assess whether silk offers any advantages over conventional suture materials. The results demonstrate that braiding single spider silk fibres together produces strong sutures with excellent fatigue behaviour; the braided silk sutures exhibited tensile strengths comparable to those of conventional sutures and no loss of strength over 1000 fatigue cycles. In addition, the braiding technique had a significant influence on the tensile properties of the braided silk sutures. These results suggest that braided spider silk could be suitable for use as sutures in flexor tendon repair, providing similar tensile behaviour and improved fatigue properties compared with conventional suture materials.  相似文献   
52.

Background

A substantial increase in transportation of goods on railway may be hindered by public fear of increased vibration and noise leading to annoyance and sleep disturbance. As the majority of freight trains run during night time, the impact upon sleep is expected to be the most serious adverse effect. The impact of nocturnal vibration on sleep is an area currently lacking in knowledge. We experimentally investigated sleep disturbance with the aim to ascertain the impact of increasing vibration amplitude.

Methodology/Principal Findings

The impacts of various amplitudes of horizontal vibrations on sleep disturbance and heart rate were investigated in a laboratory study. Cardiac accelerations were assessed using a combination of polysomnography and ECG recordings. Sleep was assessed subjectively using questionnaires. Twelve young, healthy subjects slept for six nights in the sleep laboratory, with one habituation night, one control night and four nights with a variation of vibration exposures whilst maintaining the same noise exposure. With increasing vibration amplitude, we found a decrease in latency and increase in amplitude of heart rate as well as a reduction in sleep quality and increase in sleep disturbance.

Conclusions/Significance

We concluded that nocturnal vibration has a negative impact on sleep and that the impact increases with greater vibration amplitude. Sleep disturbance has short- and long-term health consequences. Therefore, it is necessary to define levels that protect residents against sleep disruptive vibrations that may arise from night time railway freight traffic.  相似文献   
53.
The secretion of angiogenic factors by vascular endothelial cells is one of the key mechanisms of angiogenesis. Here we report on the isolation of a new potent angiogenic factor, diuridine tetraphosphate (Up4U) from the secretome of human endothelial cells. The angiogenic effect of the endothelial secretome was partially reduced after incubation with alkaline phosphatase and abolished in the presence of suramin. In one fraction, purified to homogeneity by reversed phase and affinity chromatography, Up4U was identified by MALDI-LIFT-fragment-mass-spectrometry, enzymatic cleavage analysis and retention-time comparison. Beside a strong angiogenic effect on the yolk sac membrane and the developing rat embryo itself, Up4U increased the proliferation rate of endothelial cells and, in the presence of PDGF, of vascular smooth muscle cells. Up4U stimulated the migration rate of endothelial cells via P2Y2-receptors, increased the ability of endothelial cells to form capillary-like tubes and acts as a potent inducer of sprouting angiogenesis originating from gel-embedded EC spheroids. Endothelial cells released Up4U after stimulation with shear stress. Mean total plasma Up4U concentrations of healthy subjects (N = 6) were sufficient to induce angiogenic and proliferative effects (1.34±0.26 nmol L-1). In conclusion, Up4U is a novel strong human endothelium-derived angiogenic factor.  相似文献   
54.

Background

Genetic variants within the bitter taste receptor gene TAS2R38 are associated with sensitivity to bitter taste and are related to eating behavior in the Amish population. Sensitivity to bitter taste is further related to anthropometric traits in an genetically isolated Italian population. We tested whether the TAS2R38 variants (rs713598; rs1726866 and rs10246939) may be related to eating behavior, anthropometric parameters, metabolic traits and consumer goods intake in the German Sorbs.

Materials and Methods

The three SNPs were genotyped in a total cohort of 1007 individuals (male/female: 405/602). The German version of the three-factor eating questionnaire was completed by 548 individuals. Genetic association analyses for smoking behavior, alcohol and coffee intake, eating behavior factors (restraint, disinhibition and hunger) and other metabolic traits were analyzed. Further, by combining the three SNPs we applied comparative haplotype analyses categorizing PAV (proline-alanine-valine) carriers (tasters) vs. homozygous AVI (alanin-valine-isoleucine) carriers (non-tasters).

Results

Significant associations of genetic variants within TAS2R38 were identified with percentage of body fat, which were driven by associations in women. In men, we observed significant associations with 30 min plasma glucose, and area under the curve for plasma glucose (0–120 min) (all adjusted P≤0.05). Further, we found that carriers of at least one PAV allele show significantly lower cigarette smoking per day (P = 0.002) as well as, albeit non-significant, lower alcohol intake. We did not confirm previously reported associations between genetic variants of TAS2R38 and eating behavior.

Conclusion

Our data suggest that genetic variation in TAS2R38 is related to individual body composition measures and may further influence consumer goods intake in the Sorbs possibly via individual sensitivity to bitter taste.  相似文献   
55.
Continuous processing is the future production method for monoclonal antibodies (mAbs). A fully continuous, fully automated downstream process based on disposable equipment was developed and implemented inside the MoBiDiK pilot plant. However, a study evaluating the comparability between batch and continuous processing based on product quality attributes was not conducted before. The work presented fills this gap comparing both process modes experimentally by purifying the same harvest material (side-by-side comparability). Samples were drawn at different time points and positions in the process for batch and continuous mode. Product quality attributes, product-related impurities, as well as process-related impurities were determined. The resulting polished material was processed to drug substance and further evaluated regarding storage stability and degradation behavior. The in-process control data from the continuous process showed the high degree of accuracy in providing relevant process parameters such as pH, conductivity, and protein concentration during the entire process duration. Minor differences between batch and continuous samples are expected as different processing conditions are unavoidable due to the different nature of batch and continuous processing. All tests revealed no significant differences in the intermediates and comparability in the drug substance between the samples of both process modes. The stability study of the final product also showed no differences in the stability profile during storage and forced degradation. Finally, online data analysis is presented as a powerful tool for online-monitoring of chromatography columns during continuous processing.  相似文献   
56.
57.

Background

There is a large body of literature on competitive interactions among plants, but many studies have only focused on above-ground interactions and little is known about root–root dynamics between interacting plants. The perspective on possible mechanisms that explain the outcome of root–root interactions has recently been extended to include non-resource-driven mechanisms (as well as resource-driven mechanisms) of root competition and positive interactions such as facilitation. These approaches have often suffered from being static, partly due to the lack of appropriate methodologies for in-situ non-destructive root characterization.

Scope

Recent studies show that interactive effects of plant neighbourhood interactions follow non-linear and non-additive paths that are hard to explain. Common outcomes such as accumulation of roots mainly in the topsoil cannot be explained solely by competition theory but require a more inclusive theoretical, as well as an improved methodological framework. This will include the question of whether we can apply the same conceptual framework to crop versus natural species.

Conclusions

The development of non-invasive methods to dynamically study root–root interactions in vivo will provide the necessary tools to study a more inclusive conceptual framework for root–root interactions. By following the dynamics of root–root interactions through time in a whole range of scenarios and systems, using a wide variety of non-invasive methods, (such as fluorescent protein which now allows us to separately identify the roots of several individuals within soil), we will be much better equipped to answer some of the key questions in root physiology, ecology and agronomy.  相似文献   
58.
ABSTRACT

Circadian and circannual rhythms influence not only the environment, but also human physiology. In times of increasing numbers of couples struggling with infertility, and thus increasing demand for successful assisted reproduction, the aim of our study was to evaluate circadian and circannual rhythms and their association with semen quality. A total of 12 245 semen samples from 7068 men, collected at the andrology laboratory of the Department of Reproductive Endocrinology, University Hospital Zurich, between 1994 and 2015, were uniformly analysed in terms of sperm concentration, total sperm count, progressive motility and normal morphology. On the basis of these four parameters, we retrospectively examined the circadian and circannual changes of semen quality. The Mann–Whitney U test and multiple linear regression analysis were used for the statistical evaluation. The semen samples collected in the early morning before 7:30 a.m. showed the highest levels in sperm concentration, total sperm count and normal morphology, all with statistical significance. Progressive motility did not show any significant alterations based on circadian rhythm. Furthermore, a significant increase in sperm concentration and total sperm count was found in spring, with significant decreases in the summer. The highest percentage of normal morphology was found in summer. For progressive motility, no significant seasonal variation could be demonstrated. Male semen quality varies with both circadian and circannual rhythms. Collection of semen in the early morning, where semen quality was highest, can be used to improve natural fertility as well as fertility resulting from assisted reproduction.  相似文献   
59.
Jasmonates are oxylipin signals that play important roles in the development of fertile flowers and in defense against pathogens and herbivores in leaves. The aim of this work was to understand the synthesis and function of jasmonates in roots. Grafting experiments with a jasmonate-deficient mutant demonstrated that roots produce jasmonates independently of leaves, despite low expression of biosynthetic enzymes. Levels of 12-oxo-phytodienoic acid, jasmonic acid, and its isoleucine derivative increased in roots upon osmotic and drought stress. Wounding resulted in a decrease of preformed 12-oxo-phytodienoic acid concomitant with an increase of jasmonic acid and jasmonoyl-isoleucine. 13-Lipoxygenases catalyze the first step of lipid oxidation leading to jasmonate production. Analysis of 13-lipoxygenase-deficient mutant lines showed that only one of the four 13-lipoxygenases, LOX6, is responsible and essential for stress-induced jasmonate accumulation in roots. In addition, LOX6 was required for production of basal 12-oxo-phytodienoic acid in leaves and roots. Loss-of-function mutants of LOX6 were more attractive to a detritivorous crustacean and more sensitive to drought, indicating that LOX6-derived oxylipins are important for the responses to abiotic and biotic factors.Oxylipins are ubiquitous signaling molecules that are derived from polyunsaturated fatty acids by enzymatic and nonenzymatic processes. In plants, the biosynthesis and function of oxylipins of the jasmonate family in aboveground tissues has been investigated in detail. Jasmonates comprise 12-oxo-phytodienoic acid (OPDA), jasmonic acid (JA), and derivatives of JA. In leaves, jasmonates accumulate in response to abiotic factors such as wounding, drought, osmotic stress, darkness, and ozone and during interactions with organisms such as herbivores, pathogens, and mutualistic organisms (Wasternack, 2007). The relevance of jasmonates in wound response, ozone tolerance, and the defense against herbivores and necrotrophic pathogens in leaves has been well investigated using mutants in JA biosynthesis and signaling (Browse, 2009a). In addition, jasmonates play an important role in flower development, and Arabidopsis (Arabidopsis thaliana) mutants in the JA pathway are male sterile (Browse, 2009b). The first step in jasmonate biosynthesis is catalyzed by 13-lipoxygenases (LOXs). The resulting 13(S)-hydroperoxyoctadecatrienoic acid (13-HPOTE) is converted by allene oxide synthase (AOS) and allene oxide cyclase to OPDA (Wasternack, 2007). These enzymatic steps are located in plastids. OPDA is transported to peroxisomes and converted to JA. JA can be further metabolized to different derivatives that take place mainly in the cytosol. The conjugation of JA with Ile is an important step because jasmonoyl-Ile (JA-Ile) has been identified as a biologically active jasmonate (Staswick and Tiryaki, 2004). OPDA is also biologically active without conversion to JA derivatives. In contrast to all other jasmonates, the OPDA structure contains an electrophilic α,β-unsaturated carbonyl group that renders OPDA more reactive than JA. Therefore, OPDA is classified as a reactive electrophile species with unique signaling properties different from other jasmonates (Farmer and Davoine, 2007).Of the six lipoxygenase genes present in Arabidopsis, four genes encode 13-LOX. For the respective enzymes LOX2, LOX3, LOX4, and LOX6, it was shown that linolenic acid is the preferred substrate and that 13-HPOTE is formed in vitro (Bannenberg et al., 2009). All four enzymes are proposed to be located in plastids. LOX2 is highly expressed in leaves; expression is up-regulated by jasmonates and stress treatments such as wounding and osmotic stress (Bell and Mullet, 1993; Seltmann et al., 2010a). LOX2 was shown to contribute the majority of jasmonate synthesis upon wounding and osmotic stress and during senescence in leaves (Bell et al., 1995; Glauser et al., 2009). LOX2 is also responsible for the accumulation of arabidopsides (Glauser et al., 2009), which are galactolipids containing esterified OPDA in plastids by direct oxidation of galactolipids (Zoeller et al., 2012). LOX3 and LOX4 are required for the development of fertile flowers (Caldelari et al., 2011). LOX6 shows overall low expression (Bannenberg et al., 2009). Recently, it was reported that LOX6 contributes to the fast accumulation of JA and JA-Ile in wounded leaves and is required for the fast increase of JA and JA-Ile in distal leaves after wounding (Chauvin et al., 2013).In contrast to leaves and flowers, little is known on jasmonate biosynthesis and function in roots. Expression of the plastid-localized enzymes of jasmonate synthesis LOX2, AOS, and allene oxide cyclase2 is very low in roots (Zimmermann et al., 2004). By contrast, enzymes such as 9-LOX and α-dioxygenase1 are strongly expressed in roots. These enzymes are involved in the biosynthesis of oxylipins different from jasmonates, and 9-LOX products have been shown to regulate lateral root development because mutants in LOX1 and LOX5 produce more lateral roots (Vellosillo et al., 2007). However, jasmonate function in roots is still obscure. Here, we analyzed jasmonate accumulation in roots upon different stress treatments and show that mutants defective in LOX6 are impaired in stress-induced jasmonate synthesis and are more susceptible to drought and detritivore feeding.  相似文献   
60.
Calcium-dependent chloride channels serve critical functions in diverse biological systems. Driven by cellular calcium signals, the channels codetermine excitatory processes and promote solute transport. The anoctamin (ANO) family of membrane proteins encodes three calcium-activated chloride channels, named ANO 1 (also TMEM16A), ANO 2 (also TMEM16B), and ANO 6 (also TMEM16F). Here we examined how ANO 1 and ANO 2 interact with Ca2+/calmodulin using nonstationary current analysis during channel activation. We identified a putative calmodulin-binding domain in the N-terminal region of the channel proteins that is involved in channel activation. Binding studies with peptides indicated that this domain, a regulatory calmodulin-binding motif (RCBM), provides two distinct modes of interaction with Ca2+/calmodulin, one at submicromolar Ca2+ concentrations and one in the micromolar Ca2+ range. Functional, structural, and pharmacological data support the concept that calmodulin serves as a calcium sensor that is stably associated with the RCBM domain and regulates the activation of ANO 1 and ANO 2 channels. Moreover, the predominant splice variant of ANO 2 in the brain exhibits Ca2+/calmodulin-dependent inactivation, a loss of channel activity within 30 s. This property may curtail ANO 2 activity during persistent Ca2+ signals in neurons. Mutagenesis data indicated that the RCBM domain is also involved in ANO 2 inactivation, and that inactivation is suppressed in the retinal ANO 2 splice variant. These results advance the understanding of Ca2+ regulation in anoctamin Cl channels and its significance for the physiological function that anoctamin channels subserve in neurons and other cell types.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号