首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2312篇
  免费   191篇
  2023年   6篇
  2022年   18篇
  2021年   42篇
  2020年   27篇
  2019年   30篇
  2018年   34篇
  2017年   31篇
  2016年   74篇
  2015年   107篇
  2014年   142篇
  2013年   157篇
  2012年   201篇
  2011年   198篇
  2010年   137篇
  2009年   102篇
  2008年   175篇
  2007年   142篇
  2006年   144篇
  2005年   116篇
  2004年   102篇
  2003年   96篇
  2002年   99篇
  2001年   24篇
  2000年   19篇
  1999年   22篇
  1998年   30篇
  1997年   25篇
  1996年   22篇
  1995年   16篇
  1994年   14篇
  1993年   11篇
  1992年   7篇
  1991年   9篇
  1990年   11篇
  1989年   7篇
  1988年   6篇
  1987年   9篇
  1986年   9篇
  1985年   5篇
  1984年   7篇
  1983年   4篇
  1982年   5篇
  1981年   9篇
  1980年   6篇
  1979年   5篇
  1977年   4篇
  1976年   5篇
  1974年   4篇
  1973年   7篇
  1968年   3篇
排序方式: 共有2503条查询结果,搜索用时 593 毫秒
241.
Physiological concept for a blood based CFTR test.   总被引:2,自引:0,他引:2  
We tested the hypothesis that the cystic fibrosis transmembrane conductance regulator (CFTR) could be involved in the volume regulation of human red blood cells (RBC). Experiments were based on two gadolinium (Gd(3+)) sensitive mechanisms, i.e. inhibition of ATP release (thetaATP(i)) and membrane destabilization. RBC of either cystic fibrosis (CF) patients or healthy donors (non-CF) were exposed to KCl buffer containing Gd(3+). A significantly larger quantity of non-CF RBC (2.55 %) hemolyzed as compared to CF RBC (0.89 %). It was found that both of the Gd(3+) mechanisms simultaneously are needed to achieve hemolysis, since either overriding thetaATP(i) by exogenous ATP addition prevented Gd(3+) induced hemolysis, or mimicking thetaATP(i) by apyrase in absence of Gd(3+) could not trigger hemolysis. Additionally, ion driven volume uptake was found to be a prerequisite for Gd3+ induced hemolysis as chloride and potassium channel blockers reduced the Gd(3+) response. The results show that in non-CF RBC Gd(3+) exerts its dual effect leading to hemolysis. On the contrary, in CF RBC, lacking CFTR dependent ATP release, the sole Gd(3+) effect of membrane destabilization is not sufficient to induce hemolysis similar to non-CF. This concept could form the basis of a novel method suitable for testing CFTR function in a blood sample.  相似文献   
242.
One of the mechanisms plants have developed for chloroplast protection against oxidative damage involves a 2-Cys peroxiredoxin, which has been proposed to be reduced by ferredoxin and plastid thioredoxins, Trx x and CDSP32, the FTR/Trx pathway. We show that rice (Oryza sativa) chloroplast NADPH THIOREDOXIN REDUCTASE (NTRC), with a thioredoxin domain, uses NADPH to reduce the chloroplast 2-Cys peroxiredoxin BAS1, which then reduces hydrogen peroxide. The presence of both NTR and Trx-like domains in a single polypeptide is absolutely required for the high catalytic efficiency of NTRC. An Arabidopsis thaliana knockout mutant for NTRC shows irregular mesophyll cell shape, abnormal chloroplast structure, and unbalanced BAS1 redox state, resulting in impaired photosynthesis rate under low light. Constitutive expression of wild-type NTRC in mutant transgenic lines rescued this phenotype. Moreover, prolonged darkness followed by light/dark incubation produced an increase in hydrogen peroxide and lipid peroxidation in leaves and accelerated senescence of NTRC-deficient plants. We propose that NTRC constitutes an alternative system for chloroplast protection against oxidative damage, using NADPH as the source of reducing power. Since no light-driven reduced ferredoxin is produced at night, the NTRC-BAS1 pathway may be a key detoxification system during darkness, with NADPH produced by the oxidative pentose phosphate pathway as the source of reducing power.  相似文献   
243.
Streptococcus pneumoniae is the major pathogen of community-acquired pneumonia. The respiratory epithelium constitutes the first line of defense against invading lung pathogens, including pneumococci. We analyzed the involvement of Toll-like receptors (TLR) and Rho-GTPase signaling in the activation of human lung epithelial cells by pneumococci. S. pneumoniae induced release of interleukin-8 (IL-8) by human bronchial epithelial cell line BEAS-2B. Specific inhibition of Rac1 by Nsc23766 or a dominant-negative mutant of Rac1 strongly reduced cytokine release. In addition, pneumococci-related cell activation (IL-8 release, NF-kappaB-activation) depended on MyD88, phosphatidylinositol 3-kinase, and Cdc42 but not on RhoA. Pneumococci enhanced TLR1 and TLR2 mRNA expression in BEAS-2B cells, whereas TLR4 and TLR6 expression was constitutively high. TLR1 and 2 synergistically recognized pneumococci in cotransfection experiments. TLR4, TLR6, LPS-binding protein, and CD14 seem not to be involved in pneumococci-dependent cell activation. At the IL-8 gene promoter, recruitment of phosphorylated NF-kappaB subunit p65 was blocked by inhibition of Rac1, whereas binding of the phosphorylated activator protein-1 subunit c-Jun to the promoter was not diminished. In summary, these results suggest that S. pneumoniae activate human epithelial cells by TLR1/2 and a phosphatidylinositol 3-kinase- and Rac1-dependent NF-kappaB-recruitment to the IL-8 promoter.  相似文献   
244.
Defects of peripheral nerves still represent a challenge for surgical nerve reconstruction. Recent studies concentrated on replacement by artificial nerve conduits from different synthetic or biological materials. In our study, we describe for the first time the use of spider silk fibres as a new material in nerve tissue engineering. Schwann cells (SC) were cultivated on spider silk fibres. Cells adhered quickly on the fibres compared to polydioxanone monofilaments (PDS). SC survival and proliferation was normal in Live/Dead assays. The silk fibres were ensheathed completely with cells. We developed composite nerve grafts of acellularized veins, spider silk fibres and SC diluted in matrigel. These artificial nerve grafts could be cultivated in vitro for one week. Histological analysis showed that the cells were vital and formed distinct columns along the silk fibres. In conclusion, our results show that artificial nerve grafts can be constructed successfully from spider silk, acellularized veins and SC mixed with matrigel.  相似文献   
245.
Leishmania promastigote cells transmitted by the insect vector get phagocytosed by macrophages and convert into the amastigote form. During development and transformation, the parasites are exposed to various concentrations of reactive oxygen species, which can induce programmed cell death (PCD). We show that a mitochondrial peroxiredoxin (LdmPrx) protects Leishmania donovani from PCD. Whereas this peroxiredoxin is restricted to the kinetoplast area in promastigotes, it covers the entire mitochondrion in amastigotes, accompanied by dramatically increased expression. A similar change in the expression pattern was observed during the growth of Leishmania from the early to the late logarithmic phase. Recombinant LdmPrx shows typical peroxiredoxin-like enzyme activity. It is able to detoxify organic and inorganic peroxides and prevents DNA from hydroxyl radical-induced damage. Most notably, Leishmania parasites overexpressing this peroxiredoxin are protected from hydrogen peroxide-induced PCD. This protection is also seen in promastigotes grown to the late logarithmic phase, also characterized by high expression of this peroxiredoxin. Apparently, the physiological role of this peroxiredoxin is stabilization of the mitochondrial membrane potential and, as a consequence, inhibition of PCD through removal of peroxides.  相似文献   
246.
For recognition of infected cells by CD8 T cells, antigenic peptides are presented at the cell surface, bound to major histocompatibility complex class I (MHC-I) molecules. Downmodulation of cell surface MHC-I molecules is regarded as a hallmark function of cytomegalovirus-encoded immunoevasins. The molecular mechanisms by which immunoevasins interfere with the MHC-I pathway suggest, however, that this downmodulation may be secondary to an interruption of turnover replenishment and that hindrance of the vesicular transport of recently generated peptide-MHC (pMHC) complexes to the cell surface is the actual function of immunoevasins. Here we have used the model of murine cytomegalovirus (mCMV) infection to provide experimental evidence for this hypothesis. To quantitate pMHC complexes at the cell surface after infection in the presence and absence of immunoevasins, we generated the recombinant viruses mCMV-SIINFEKL and mCMV-Δm06m152-SIINFEKL, respectively, expressing the Kb-presented peptide SIINFEKL with early-phase kinetics in place of an immunodominant peptide of the viral carrier protein gp36.5/m164. The data revealed ∼10,000 Kb molecules presenting SIINFEKL in the absence of immunoevasins, which is an occupancy of ∼10% of all cell surface Kb molecules, whereas immunoevasins reduced this number to almost the detection limit. To selectively evaluate their effect on preexisting pMHC complexes, cells were exogenously loaded with SIINFEKL peptide shortly after infection with mCMV-SIINFEKA, in which endogenous presentation is prevented by an L174A mutation of the C-terminal MHC-I anchor residue. The data suggest that pMHC complexes present at the cell surface in advance of immunoevasin gene expression are downmodulated due to constitutive turnover in the absence of resupply.CD8 T cells recognize infected cells by interaction of their T-cell receptor (TCR) with a cell surface presentation complex composed of a cognate antigenic peptide bound to a presenting allelic form of a major histocompatibility complex class I (MHC-I) glycoprotein (77, 85, 97, 98). The number of such “peptide receptors” per cell has been estimated to be on the order of 105 to 106 for each MHC-I allomorph (for a review, see reference 82). Viral antigenic peptides are generated within infected cells by proteolytic processing of viral proteins, usually in the proteasome, and associate with nascent MHC-I proteins in the endoplasmic reticulum (ER) before the peptide-MHC (pMHC) complexes travel to the cell surface with the cellular vesicular flow (for reviews, see references 13, 87, 92, and 93). CD8 T cells have long been known to protect against cytomegalovirus (CMV) infection and disease in animal models (60, 72; reviewed in references 33 and 36) and in humans (9, 61, 67, 75, 76). As shown only recently in the murine CMV (mCMV) model of infection of immunocompromised mice by adoptive transfer of epitope-specific CD8 T cells, antiviral protection against CMV is indeed TCR mediated and epitope dependent. Specifically, memory cells purified by TCR-based epitope-specific cell sorting, as well as cells of a peptide-selected cytolytic T-lymphocyte line, protected against mCMV expressing the cognate antigenic peptide, the IE1 peptide 168-YPHFMPTNL-176 in this example, but failed to control infection with a recombinant mCMV expressing a peptide analogue in which the C-terminal MHC-I anchor residue leucine was replaced with alanine (3).Interference with the MHC-I pathway of antigen presentation has evolved as a viral immune evasion mechanism of CMVs and other viruses, mediated by virally encoded proteins that inhibit MHC-I trafficking to the cell surface (for reviews, see references 1, 24, 27, 29, 63, 70, 71, 84, and 95). These molecules are known as immunoevasins (50, 70, 89), as “viral proteins interfering with antigen presentation” (VIPRs) (95), or as negative “viral regulators of antigen presentation” (vRAPs) (34). Although the detailed molecular mechanisms differ between different CMV species in their respective hosts, the common biological outcome is the inhibition of antigen presentation. Accordingly, downmodulation of MHC-I cell surface expression is a hallmark of molecular immune evasion and actually led to the discovery of this class of molecules. Since CD8 T cells apparently protect against infection with wild-type CMV strains despite the expression of immunoevasins, the in vivo relevance of these molecules is an issue of current interest and investigation (for a review, see reference 14). As shown recently with the murine model, antigen presentation in infected host cells is not completely blocked for all epitopes, because pMHC complexes that are constitutively formed in sufficiently large amounts can exhaust the inhibitory capacity of the immunoevasins (40). Likewise, enhancing antigen processing conditionally with gamma interferon (IFN-γ) aids in peptide presentation in the presence of immunoevasins (18, 28). Thus, by raising the threshold of the amount of peptide required for presentation, immunoevasins determine whether a particular viral peptide can function as a protective epitope—an issue of relevance for rational vaccine design as well (94). Whereas deletion of immunoevasin genes gives only incremental improvement to the control of infection in immunocompetent mice (22, 51), expression of immunoevasins reduces the protective effect of adoptively transferred CD8 T cells in immunocompromised recipients (37, 40, 47, 48). In a bone marrow transplantation model, immunoevasins were recently found to contribute to enhanced and prolonged virus replication during hematopoietic reconstitution and, consequently, also to higher latent viral genome loads in the lungs and a higher incidence of virus recurrence (4). Notably, however, immunoevasins do not inhibit but, rather, enhance CD8 T-cell priming (5, 21, 22, 56), due to higher viral replication levels in draining lymph nodes associated with sustained antigen supply for the cross-priming of CD8 T cells by uninfected antigen-presenting cells (5).For mCMV, three molecules are proposed to function as vRAPs, only two of which are confirmed negative regulators that downmodulate cell surface MHC-I (34, 62, 89) and inhibit the presentation of antigenic peptides to CD8 T cells (34, 62). Immunoevasin gp40/m152 transiently interacts with MHC-I molecules and mediates their retention in a cis-Golgi compartment (96), whereas gp48/m06 stably binds to MHC-I molecules in the ER and mediates sorting of the complexes for lysosomal degradation by a mechanism that involves the cellular cargo sorting adaptor proteins AP1-A and AP3-A (73, 74). The third proposed immunoevasin of mCMV, gp34/m04 (46), also binds stably to MHC-I molecules. A function as a CD8 T-cell immunoevasin was predicted from some alleviation of immune evasion for certain epitopes and MHC-I molecules in cells infected with the deletion mutant mCMV-Δm04 (34, 42, 89), but gp34/m04 does not reduce the steady-state level of cell surface class I molecules and does not inhibit peptide presentation when expressed selectively after infection with mCMV-Δm06m152 (34, 62). The m04-MHC-I complexes are expressed on the cell surface (46) and appear to be involved in the modulation of natural killer cell activity (45).Here we give the first report on quantitating the efficacy of immunoevasins in terms of absolute numbers of pMHC complexes displayed at the cell surface. By comparing the fate of pMHC complexes already present at the cell surface in advance of immunoevasin gene expression with that of newly formed pMHC complexes, our data provide direct evidence to conclude that downmodulation of cell surface MHC-I molecules is secondary to an interruption of the flow of newly formed pMHC complexes to the cell surface.(Part of this work was presented at the 12th International CMV/Betaherpesvirus Workshop, 10 to 14 May 2009, Boston, MA.)  相似文献   
247.
Spider dragline silk, one of the strongest polymers in nature, is composed of proteins termed major ampullate spidroin (MaSp) 1 and MaSp2. The N-terminal (NT) domain of MaSp1 produced by the nursery web spider Euprosthenops australis acts as a pH-sensitive relay, mediating spidroin assembly at around pH 6.3. Using amide hydrogen/deuterium exchange combined with mass spectrometry (MS), we detected pH-dependent changes in deuterium incorporation into the core of the NT domain, indicating global structural stabilization at low pH. The stabilizing effects were diminished or abolished at high ionic strength, or when the surface-exposed residues Asp40 and Glu84 had been exchanged with the corresponding amides. Nondenaturing electrospray ionization MS revealed the presence of dimers in the gas phase at pH values below—but not above—6.4, indicating a tight electrostatic association that is dependent on Asp40 and Glu84 at low pH. Results from analytical ultracentrifugation support these findings. Together, the data suggest a mechanism whereby lowering the pH to < 6.4 results in structural changes and alteration of charge-mediated interactions between subunits, thereby locking the spidroin NT dimer into a tight entity important for aggregation and silk formation.  相似文献   
248.

Background

Although non-heart-beating donors have the potential to increase the number of available organs, the livers are used very seldom because of the risk of primary non-function. There is evidence that machine perfusion is able to improve the preservation of marginal organs, and therefore we evaluated in our study the influence of the perfusate temperature during oxygenated machine perfusion on the graft quality.

Methods

Livers from male Wistar rats were harvested after 60-min warm ischemia induced by cardiac arrest. The portal vein was cannulated and the liver flushed with Lifor® (Lifeblood Medical, Inc.) organ preservation solution for oxygenated machine perfusion (MP) at 4, 12 or 21 °C. Other livers were flushed with HTK and stored at 4 °C by conventional cold storage (4 °C-CS). Furthermore two groups with either warm ischemic damage only or without any ischemic damage serve as control groups. After 6 h of either machine perfusion or cold storage all livers were normothermic reperfused with Krebs–Henseleit buffer, and functional as well as structural data were analyzed.

Results

Contrary to livers stored by static cold storage, machine perfused livers showed independently of the perfusate temperature a significantly decreased enzyme release of hepatic transaminases (ALT) during isolated reperfusion. Increasing the machine perfusion temperature to 21 °C resulted in a marked reduction of portal venous resistance and an increased bile production.

Conclusions

Oxygenated machine perfusion improves viability of livers after prolonged warm ischemic damage. Elevated perfusion temperature of 21 °C reconstitutes the hepatic functional capacity better than perfusion at 4 or 12 °C.  相似文献   
249.
The final step in the liberation of secretory vesicles from the trans-Golgi network (TGN) involves the mechanical action of the large GTPase dynamin as well as conserved dynamin-independent fission mechanisms, e.g. mediated by Brefeldin A-dependent ADP-ribosylated substrate (BARS). Another member of the dynamin family is the mammalian dynamin-like protein 1 (DLP1/Drp1) that is known to constrict and tubulate membranes, and to divide mitochondria and peroxisomes. Here, we examined a potential role for DLP1 at the Golgi complex. DLP1 localized to the Golgi complex in some but not all cell lines tested, thus explaining controversial reports on its cellular distribution. After silencing of DLP1, an accumulation of the apical reporter protein YFP-GL-GPI, but not the basolateral reporter VSVG-SP-GFP at the Golgi complex was observed. A reduction in the transport of YFP-GL-GPI to the plasma membrane was confirmed by surface immunoprecipitation and TGN-exit assays. In contrast, YFP-GL-GPI trafficking was not disturbed in cells silenced for BARS, which is involved in basolateral sorting and trafficking of VSVG-SP-GFP in COS-7 cells. Our data indicate a new role for DLP1 at the Golgi complex and thus a role for DLP1 as a novel component of the apical sorting machinery at the TGN is discussed.  相似文献   
250.
Leukocyte recruitment from the blood into injured tissues during inflammatory diseases is the result of sequential events involving chemokines binding to their GPC receptors as well as to their glycosaminoglycan (GAG) co-receptors. The induction and the crucial role of MCP-1/CCL2 in the course of diseases that feature monocyte-rich infiltrates have been validated in many animal models, and several MCP-1/CCL2 as well as CCR2 antagonists have since been generated. However, despite some of them being shown to be efficacious in a number of animal models, many failed in clinical trials, and therapeutically interfering with the activity of this chemokine is not yet possible. We have therefore generated novel MCP-1/CCL2 mutants with increased GAG binding affinity and knocked out CCR2 activity, which were designed to interrupt the MCP-1/CCL2-related signaling cascade. We provide evidence that our lead mutant MCP-1(Y13A/S21K/Q23R) exhibits a 4-fold higher affinity toward the natural MCP-1 GAG ligand heparan sulfate and that it shows a complete deficiency in activating CCR2 on THP-1 cells. Furthermore, a significantly longer residual time on GAG ligands was observed by surface plasmon resonance. Finally, we were able to show that MCP-1(Y13A/S21K/Q23R) had a mild ameliorating effect on experimental autoimmune uveitis and that a marginal effect on oral tolerance in the group co-fed with Met-MCP-1(Y13A/S21K/Q23R) plus immunogenic peptide PDSAg was observed. These results suggest that disrupting wild type chemokine-GAG interactions by a chemokine-based antagonist can result in anti-inflammatory activity that could have potential therapeutic implications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号