全文获取类型
收费全文 | 2316篇 |
免费 | 191篇 |
专业分类
2507篇 |
出版年
2023年 | 7篇 |
2022年 | 20篇 |
2021年 | 42篇 |
2020年 | 27篇 |
2019年 | 30篇 |
2018年 | 34篇 |
2017年 | 31篇 |
2016年 | 74篇 |
2015年 | 107篇 |
2014年 | 142篇 |
2013年 | 157篇 |
2012年 | 201篇 |
2011年 | 198篇 |
2010年 | 137篇 |
2009年 | 102篇 |
2008年 | 175篇 |
2007年 | 142篇 |
2006年 | 144篇 |
2005年 | 116篇 |
2004年 | 102篇 |
2003年 | 96篇 |
2002年 | 99篇 |
2001年 | 24篇 |
2000年 | 19篇 |
1999年 | 22篇 |
1998年 | 30篇 |
1997年 | 25篇 |
1996年 | 22篇 |
1995年 | 16篇 |
1994年 | 14篇 |
1993年 | 11篇 |
1992年 | 7篇 |
1991年 | 9篇 |
1990年 | 11篇 |
1989年 | 7篇 |
1988年 | 6篇 |
1987年 | 9篇 |
1986年 | 9篇 |
1985年 | 5篇 |
1984年 | 7篇 |
1983年 | 4篇 |
1982年 | 5篇 |
1981年 | 9篇 |
1980年 | 6篇 |
1979年 | 5篇 |
1977年 | 4篇 |
1976年 | 5篇 |
1974年 | 4篇 |
1973年 | 7篇 |
1968年 | 3篇 |
排序方式: 共有2507条查询结果,搜索用时 20 毫秒
11.
12.
van Wezel GP König M Mahr K Nothaft H Thomae AW Bibb M Titgemeyer F 《Journal of molecular microbiology and biotechnology》2007,12(1-2):67-74
Members of the soil-dwelling prokaryotic genus Streptomyces are indispensable for the recycling of complex polysaccharides, and produce a wide range of natural products. Nutrient limitation is likely to be a major signal for the onset of their development, resulting in spore formation by specialized aerial hyphae. Streptomycetes grow on numerous carbon sources, which they utilize in a preferential manner. The main signaling pathway underlying this phenomenon is carbon catabolite repression, which in streptomycetes is totally dependent on the glycolytic enzyme glucose kinase (Glk). How Glk exerts this fascinating dual role (metabolic and regulatory) is still largely a mystery. We show here that while Glk is made constitutively throughout the growth of Streptomyces coelicolor A3(2), its catalytic activity is modulated in a carbon source-dependent manner: while cultures growing exponentially on glucose exhibit high Glk activity, mannitol- grown cultures show negligible activity. Glk activity was directly proportional to the amount of two Glk isoforms observed by Western blot analysis. The activity profile of GlcP, the major glucose permease, correlated very well with that of Glk. Our data are consistent with a direct interaction between Glk and GlcP, suggesting that a Glk-GlcP permease complex is required for efficient glucose transport by metabolic trapping. This is supported by the strongly reduced accumulation of glucose in glucose kinase mutants. A model to explain our data is presented. 相似文献
13.
Kerstin Reiss Jennifer E. Stencel Yan Liu B?rbel S. Blaum Dirk M. Reiter Ten Feizi Terence S. Dermody Thilo Stehle 《PLoS pathogens》2012,8(12)
Viral attachment to target cells is the first step in infection and also serves as a determinant of tropism. Like many viruses, mammalian reoviruses bind with low affinity to cell-surface carbohydrate receptors to initiate the infectious process. Reoviruses disseminate with serotype-specific tropism in the host, which may be explained by differential glycan utilization. Although α2,3-linked sialylated oligosaccharides serve as carbohydrate receptors for type 3 reoviruses, neither a specific glycan bound by any reovirus serotype nor the function of glycan binding in type 1 reovirus infection was known. We have identified the oligosaccharide portion of ganglioside GM2 (the GM2 glycan) as a receptor for the attachment protein σ1 of reovirus strain type 1 Lang (T1L) using glycan array screening. The interaction of T1L σ1 with GM2 in solution was confirmed using NMR spectroscopy. We established that GM2 glycan engagement is required for optimal infection of mouse embryonic fibroblasts (MEFs) by T1L. Preincubation with GM2 specifically inhibited type 1 but not type 3 reovirus infection of MEFs. To provide a structural basis for these observations, we defined the mode of receptor recognition by determining the crystal structure of T1L σ1 in complex with the GM2 glycan. GM2 binds in a shallow groove in the globular head domain of T1L σ1. Both terminal sugar moieties of the GM2 glycan, N-acetylneuraminic acid and N-acetylgalactosamine, form contacts with the protein, providing an explanation for the observed specificity for GM2. Viruses with mutations in the glycan-binding domain display diminished hemagglutination capacity, a property dependent on glycan binding, and reduced capacity to infect MEFs. Our results define a novel mode of virus-glycan engagement and provide a mechanistic explanation for the serotype-dependent differences in glycan utilization by reovirus. 相似文献
14.
In this paper we examine the bias towards weekend recording (the weekend effect) in volunteer phenology, using over 14,000 bird migration phenological observations from eight locations in the UK as a data source. Data from 45 bird species were used. Overall, 44% of all records were taken at weekends in contrast to the 28.6% (i.e. two out of seven days) that would be expected if records were evenly spread throughout the week. Whilst there is documented evidence of environmental differences at weekends, particularly in large urban areas, we believe the weekend effect is mostly a consequence of greater recorder effort at weekends. Some birds, likely to be obvious by their behaviour or abundance, had fewer weekend records than the remaining species. The weekend effect, to some extent, differed between locations and between seasons. There was some evidence that, particularly in autumn, the weekend bias may be lessening. If so, this will increase the accuracy of phenological records, making the detection of changes and responses to temperature easier. 相似文献
15.
When sows kept under commercial conditions were put into crates in the early 1960s, the neuro-endocrine regulation of the maternal behavior in these domestic animals was disputed. Thus, the study of sow maternal behavior intensified and today a significant body of knowledge has accumulated to support the hormonal regulation of sow maternal behavior. The onset of nest building is associated with a periparturient decline in progesterone, an increase in prolactin and a major rise in plasma concentrations of PGF2alpha the day before parturition. Some nest building behaviors, such as pawing and gathering straw, have been found to correlate with changes in the levels of progesterone, prolactin and somatostatin. The duration of the birth process correlates negatively with peripheral oxytocin levels. During lactation, the stimuli from the piglets affect the release of several hormones which not only regulate the let down of milk but also sow metabolism and mammary milk production. The sow's nursing behavior ensures an even distribution of milk to her piglets. The piglets suckling behavior, in turn, is mainly a way to communicate their individual nutritional needs. 相似文献
16.
17.
Jens A. Hammerl Claudia J?ckel Thomas Alter Pawel Janzcyk Kerstin Stingl Marie Theres Knüver Stefan Hertwig 《PloS one》2014,9(12)
Background
Bacteriophage treatment is a promising tool to reduce Campylobacter in chickens. Several studies have been published where group II or group III phages were successfully applied. However, these two groups of phages are different regarding their host ranges and host cell receptors. Therefore, a concerted activity of group II and group III phages might enhance the efficacy of a treatment and decrease the number of resistant bacteria.Results
In this study we have compared the lytic properties of some group II and group III phages and analysed the suitability of various phages for a reduction of C. jejuni in broiler chickens. We show that group II and group III phages exhibit different kinetics of infection. Two group III and one group II phage were selected for animal experiments and administered in different combinations to three groups of chickens, each containing ten birds. While group III phage CP14 alone reduced Campylobacter counts by more than 1 log10 unit, the concomitant administration of a second group III phage (CP81) did not yield any reduction, probably due to the development of resistance induced by this phage. One group of chickens received phage CP14 and, 24 hours later, group II phage CP68. In this group of animals, Campylobacter counts were reduced by more than 3 log10 units.Conclusion
The experiments illustrated that Campylobacter phage cocktails have to be carefully composed to achieve the best results. 相似文献18.
Nuria Albet-Torres Marieke J. Bloemink Tom Barman Robin Candau Kerstin Fr?lander Michael A. Geeves Kerstin Golker Christian Herrmann Corinne Lionne Claudia Piperio Stephan Schmitz Claudia Veigel Alf M?nsson 《The Journal of biological chemistry》2009,284(34):22926-22937
Amrinone is a bipyridine compound with characteristic effects on the force-velocity relationship of fast skeletal muscle, including a reduction in the maximum shortening velocity and increased maximum isometric force. Here we performed experiments to elucidate the molecular mechanisms for these effects, with the additional aim to gain insight into the molecular mechanisms underlying the force-velocity relationship. In vitro motility assays established that amrinone reduces the sliding velocity of heavy meromyosin-propelled actin filaments by 30% at different ionic strengths of the assay solution. Stopped-flow studies of myofibrils, heavy meromyosin and myosin subfragment 1, showed that the effects on sliding speed were not because of a reduced rate of ATP-induced actomyosin dissociation because the rate of this process was increased by amrinone. Moreover, optical tweezers studies could not detect any amrinone-induced changes in the working stroke length. In contrast, the ADP affinity of acto-heavy meromyosin was increased about 2-fold by 1 mm amrinone. Similar effects were not observed for acto-subfragment 1. Together with the other findings, this suggests that the amrinone-induced reduction in sliding velocity is attributed to inhibition of a strain-dependent ADP release step. Modeling results show that such an effect may account for the amrinone-induced changes of the force-velocity relationship. The data emphasize the importance of the rate of a strain-dependent ADP release step in influencing the maximum sliding velocity in fast skeletal muscle. The data also lead us to discuss the possible importance of cooperative interactions between the two myosin heads in muscle contraction.Muscle contraction, as well as several other aspects of cell motility, results from cyclic interactions between myosin II motors and actin filaments. These force-generating interactions are driven by the hydrolysis of ATP at the myosin active site as outlined in Scheme 1 (1–3). In the absence of actin, the Pi and ADP release steps (k4 and k5) are rate-limiting for the entire cycle at high (>12 °C) and low temperatures, respectively (4–6). In the presence of actin, the rate of Pi release increases significantly, and the overall cycle is accelerated more than 2 orders of magnitude. The sliding velocity of myosin-propelled motors is generally believed to be rate-limited by actomyosin dissociation (rate constant k′5, k′6, or k′2 in Scheme 1) (7). Alternatively, some studies (8, 9) have suggested that the sliding velocity is determined by the fraction of myosin heads in the weak-binding states, AM4 ATP and AM ADP Pi. However, it is worth emphasizing that KT is very low under physiological conditions (1, 3) with low population of these states. For the same reason, the rate of dissociation of the AM complex is governed by K′1 and k′2.Open in a separate windowSCHEME 1.Simplified kinetics scheme for MgATP turnover by myosin (lower row) and actomyosin (upper row). Inorganic phosphate is denoted by Pi; MgATP is denoted by ATP, and MgADP is denoted by ADP; myosin is denoted by M. The states AM*ADP and AM ADP correspond to myosin heads with their nucleotide binding pocket in a partially closed and open conformation, respectively (7, 52). Rate constants are indicated by lowercase letters (rightward transitions, k2 − k5 and k′2 − k′5, or leftward transitions, k−2 − k−5 and k′−2 − k′−5) and equilibrium constants by uppercase letters (K1, K′1, KT, K3, K′3, K6, k′6, and KDP). The equilibrium constants are association constants except for simple bimolecular reactions where they are defined as ki/k−i.For the study of contractile mechanisms in both muscle and other types of cells, drugs may be useful as pharmacological tools affecting different transitions or states in the force-generating cycle. Whereas the use of drugs as tools may be less specific than site-directed mutagenesis, it also has advantages. The motor protein function may be studied in vivo, with maintained ordering of the protein components, e.g. as in the muscle sarcomere, allowing more insight into the relationship between specific molecular events and contractile properties of muscle. A drug that has been used quite extensively in this context is butanedione monoxime. The usefulness of this drug is based on firm characterization of its effect on actomyosin function on the molecular level (3, 10–13). More recently other drugs, like N-benzyl-p-toluene sulfonamide (14, 15) and blebbistatin (16), have been found to affect myosin function, and their effects at the molecular level have also been elucidated in some detail (14, 15, 17, 18). Both these drugs appear to affect the actomyosin interaction in a similar way as butanedione monoxime by inhibiting a step before (or very early in) the myosin power stroke, leading to the inhibition of actomyosin cross-bridge formation and force production.In contrast to the reduced isometric force, caused by the above mentioned drugs, the bipyridine compound amrinone (Fig. 1A) has been found to increase the isometric force production of fast intact skeletal muscles of the frog (19, 20) and mouse (21) and also of fast (but much less slow) skinned muscle fibers of the rat (22). In all the fast myosin preparations, the effect of about 1 mm amrinone on isometric force was associated with characteristic changes of the force-velocity relationship (Fig. 1B), including a reduced maximum velocity of shortening (19–22) and a reduced curvature of the force-velocity relationship (19–22). The latter effect was accompanied (20, 21) by a less pronounced deviation of the force-velocity relationship from the hyperbolic shape (23) at high loads. There have been different interpretations of the drug effects. It has been proposed (20–22) that amrinone might competitively inhibit the MgATP binding by myosin. However, more recently, results from in vitro motility assay experiments (24) challenged this idea. These results showed that amrinone reduces the sliding velocity (Vmax) at saturating MgATP concentrations but not at MgATP concentrations close to, or below, the Km value for the hyperbolic relationship between MgATP concentration and sliding velocity. Such a combination of effects is consistent with a reduced MgADP release rate (24) but not with competitive inhibition of substrate binding. However, effects of amrinone on the MgADP release rate have not been directly demonstrated. Additionally, in view of the uncertainty about what step actually determines the sliding velocity at saturating [MgATP] (see above and Refs. 7–9), it is of interest to consider other possible drug effects that could account for the data of Klinth et al. (24). These include the following: 1) an increased drag force, e.g. because of enhancement of weak actomyosin interactions; 2) a reduced step length; and 3) effects of the drug on the rate of MgATP-induced dissociation of actomyosin.Open in a separate windowFIGURE 1.A, structure of amrinone. B, experimental force-velocity data obtained in the presence (filled symbols) and absence (open symbols) of 1.1 mm amrinone. The data, from intact single frog muscle fibers, were obtained at 2 °C and fitted by Hill''s (42) hyperbola (lines) for data truncated at 80% of the maximum isometric force. Filled line, equation fitted to control data, a/P0* = 0.185; P0*/P0 = 1.196. Dashed line, amrinone, a/P0* = 0.347; P0*/P0 = 1.009. Force-velocity data were obtained in collaboration with Professor K. A. P. Edman. Same data as in Fig. 8 of Ref. 20. Note a decrease in maximum sliding velocity and curvature of the force-velocity relationship at low force, in response to amrinone. Also note that amrinone caused increased isometric force and a reduced deviation of the force-velocity relationship from the Hill''s hyperbola at high force. All changes of the force-velocity relationship were statistically significant (20), and similar changes were later also observed in intact mouse muscle and skinned rat muscle fibers. Data in Fig. 1 are published by agreement with Professor K. A. P. Edman.To differentiate between these hypotheses for the amrinone effects, and to gain more general insight into fundamental aspects of muscle function (e.g. mechanisms underlying the force-velocity relationship), we here study the molecular effects of amrinone on fast skeletal muscle myosin preparations in the presence and absence of actin.In vitro motility assay studies at different ionic strengths suggest that drag forces, caused by increased fraction of myosin heads in weak binding states, are not important for the effect of amrinone on sliding velocity. Likewise, optical tweezers studies showed no effect of the drug on the myosin step length. Finally, ideas that amrinone should reduce sliding velocity by reduced rate of MgATP-induced dissociation could be discarded because the drug actually increased the rate of this process. Instead, we found an amrinone-induced increase in the MgADP affinity of heavy meromyosin (HMM) in the presence of actin. Interestingly, similar effects of amrinone were not observed using myosin S1. As discussed below, this result and other results point to an amrinone-induced reduction in the rate of a strain-dependent MgADP release step. Simulations, using a model modified from that of Edman et al. (25), support this proposed mechanism of action. The results are discussed in relation to fundamental mechanisms underlying the force-velocity relationship of fast skeletal muscle, including which step determines shortening velocity and the possible importance of inter-head cooperativity. 相似文献
19.
Dominik P. J. Heib Kerstin Hoedlmoser Peter Anderer Josef Zeitlhofer Georg Gruber Wolfgang Klimesch Manuel Schabus 《PloS one》2013,8(12)
There is growing evidence of the active involvement of sleep in memory consolidation. Besides hippocampal sharp wave-ripple complexes and sleep spindles, slow oscillations appear to play a key role in the process of sleep-associated memory consolidation. Furthermore, slow oscillation amplitude and spectral power increase during the night after learning declarative and procedural memory tasks. However, it is unresolved whether learning-induced changes specifically alter characteristics of individual slow oscillations, such as the slow oscillation up-state length and amplitude, which are believed to be important for neuronal replay. 24 subjects (12 men) aged between 20 and 30 years participated in a randomized, within-subject, multicenter study. Subjects slept on three occasions for a whole night in the sleep laboratory with full polysomnography. Whereas the first night only served for adaptation purposes, the two remaining nights were preceded by a declarative word-pair task or by a non-learning control task. Slow oscillations were detected in non-rapid eye movement sleep over electrode Fz. Results indicate positive correlations between the length of the up-state as well as the amplitude of both slow oscillation phases and changes in memory performance from pre to post sleep. We speculate that the prolonged slow oscillation up-state length might extend the timeframe for the transfer of initial hippocampal to long-term cortical memory representations, whereas the increase in slow oscillation amplitudes possibly reflects changes in the net synaptic strength of cortical networks. 相似文献
20.
Hubert Korr Nicholas B. Angstman Tatjana B. Born Kerstin Bosse Birka Brauns Martin Demmler Katja Fueller Orsolya Kántor Barbara M. Kever Navida Rahimyar Sepideh Salimi Jiri Silny Christoph Schmitz 《PloS one》2014,9(10)