首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2467篇
  免费   204篇
  2671篇
  2023年   9篇
  2022年   22篇
  2021年   45篇
  2020年   30篇
  2019年   41篇
  2018年   37篇
  2017年   36篇
  2016年   77篇
  2015年   110篇
  2014年   151篇
  2013年   164篇
  2012年   205篇
  2011年   207篇
  2010年   152篇
  2009年   106篇
  2008年   181篇
  2007年   146篇
  2006年   150篇
  2005年   117篇
  2004年   107篇
  2003年   97篇
  2002年   99篇
  2001年   25篇
  2000年   20篇
  1999年   28篇
  1998年   36篇
  1997年   28篇
  1996年   24篇
  1995年   17篇
  1994年   15篇
  1993年   11篇
  1992年   7篇
  1991年   10篇
  1990年   11篇
  1989年   7篇
  1988年   6篇
  1987年   9篇
  1986年   10篇
  1985年   6篇
  1984年   7篇
  1982年   5篇
  1981年   10篇
  1980年   6篇
  1979年   8篇
  1977年   7篇
  1976年   5篇
  1974年   7篇
  1973年   9篇
  1971年   6篇
  1968年   6篇
排序方式: 共有2671条查询结果,搜索用时 0 毫秒
51.

Background

EEG studies of working memory (WM) have demonstrated load dependent frequency band modulations. FMRI studies have localized load modulated activity to the dorsolateral prefrontal cortex (DLPFC), medial prefrontal cortex (MPFC), and posterior parietal cortex (PPC). Recently, an EEG-fMRI study found that low frequency band (theta and alpha) activity negatively correlated with the BOLD signal during the retention phase of a WM task. However, the coupling of higher (beta and gamma) frequencies with the BOLD signal during WM is unknown.

Methodology

In 16 healthy adult subjects, we first investigated EEG-BOLD signal correlations for theta (5–7 Hz), alpha1 (8–10), alpha2 (10–12 Hz), beta1 (13–20), beta2 (20–30 Hz), and gamma (30–40 Hz) during the retention period of a WM task with set size 2 and 5. Secondly, we investigated whether load sensitive brain regions are characterised by effects that relate frequency bands to BOLD signals effects.

Principal Findings

We found negative theta-BOLD signal correlations in the MPFC, PPC, and cingulate cortex (ACC and PCC). For alpha1 positive correlations with the BOLD signal were found in ACC, MPFC, and PCC; negative correlations were observed in DLPFC, PPC, and inferior frontal gyrus (IFG). Negative alpha2-BOLD signal correlations were observed in parieto-occipital regions. Beta1-BOLD signal correlations were positive in ACC and negative in precentral and superior temporal gyrus. Beta2 and gamma showed only positive correlations with BOLD, e.g., in DLPFC, MPFC (gamma) and IFG (beta2/gamma). The load analysis revealed that theta and—with one exception—beta and gamma demonstrated exclusively positive load effects, while alpha1 showed only negative effects.

Conclusions

We conclude that the directions of EEG-BOLD signal correlations vary across brain regions and EEG frequency bands. In addition, some brain regions show both load sensitive BOLD and frequency band effects. Our data indicate that lower as well as higher frequency brain oscillations are linked to neurovascular processes during WM.  相似文献   
52.
Several types of DNA lesion are induced after ionizing irradiation (IR) of which double strand breaks (DSBs) are expected to be the most lethal, although single strand breaks (SSBs) and DNA base damages are quantitatively in the majority. Proteins of the base excision repair (BER) pathway repair these numerous lesions. DNA polymerase beta has been identified as a crucial enzyme in BER and SSB repair (SSBR). We showed previously that inhibition of BER/SSBR by expressing a dominant negative DNA polymerase beta (polβDN) resulted in radiosensitization. We hypothesized increased kill to result from DSBs arising from unrepaired SSBs and BER intermediates. We find here higher numbers of IR-induced chromosome aberrations in polβDN expressing cells, confirming increased DSB formation. These aberrations did not result from changes in DSB induction or repair of the majority of lesions. SSB conversion to DSBs has been shown to occur during replication. We observed an increased induction of chromatid aberrations in polβDN expressing cells after IR, suggesting such a replication-dependence of secondary DSB formation. We also observed a pronounced increase of chromosomal deletions, the most likely cause of the increased kill. After H2O2 treatment, polβDN expression only resulted in increased chromatid (not chromosome) aberrations. Together with the lack of sensitization to H2O2, these data further suggest that the additional secondarily induced lethal DSBs resulted from repair attempts at complex clustered damage sites, unique to IR. Surprisingly, the polβDN induced increase in residual γH2AX foci number was unexpectedly low compared with the radiosensitization or induction of aberrations. Our data thus demonstrate the formation of secondary DSBs that are reflected by increased kill but not by residual γH2AX foci, indicating an escape from γH2AX-mediated DSB repair. In addition, we show that in the polβDN expressing cells secondary DSBs arise in a radiation-specific and partly replication-dependent manner.  相似文献   
53.
54.
The water flea Daphnia is a new model organism for ecological, evolutionary, and toxicological genomics. Detailed functional analysis of genes newly discovered through genomic approaches often requires overexpression of the identified protein. In the present study, we report the microinjection of in vitro-synthesized RNAs into the eggs as a method for overexpressing ubiquitous proteins in Daphnia magna. We injected a 1.3-kb mRNA that coded for the red fluorescent protein (DsRed2) flanked by UTRs from the ubiquitously expressed elongation factor 1α-1 (EF1α-1) into D. magna embryos. DsRed2 fluorescence in the embryos was measured 24 h after microinjection. Unexpectedly, the reporter RNA containing the 522-bp full-length EF1α-1 3′ UTR failed to induce fluorescence. To assess reporter expression, the length of the 3′ UTR that potentially contained negative regulatory elements of protein expression, including AU-rich regions and Musashi binding elements, was serially reduced from the 3′ end. Assessing all injected RNA alternatives, mRNA containing the first 60 bp of the 3′ UTR gave rise to the highest fluorescence, 14 times the Daphnia auto-fluorescence. In contrast, mRNA lacking the entire 3′ UTR hardly induced any change in fluorescence intensity. This is the first evaluation of UTRs of mRNAs delivered into Daphnia embryos by microinjection for overexpressing proteins. The mRNA with truncated 3′ UTRs of Daphnia EF1α-1 will be useful not only for gain-of-function analyses but also for labeling proteins and organelles with fluorescent proteins in Daphnia.  相似文献   
55.
56.
57.
Hypertrophic cardiomyopathy (HCM) is a genetically and clinically heterogeneous myocardial disease that is in most cases familial and transmitted in a dominant fashion. The most frequently affected gene codes for the cardiac (ventricular) β-myosin heavy chain. We have investigated the genetic cause of an isolated case of HCM, which was marked by an extremely severe phenotype and a very early age of onset. HCM is normally not a disease of small children. The proband was a boy who had suffered cardiac arrest at the age of 6.5years (resuscitation by cardioconversion). Upon screening of the β-myosin heavy chain gene as a candidate, two missense mutations, one in exon19 (Arg719Trp) and a second in exon12 (Met349Thr), were identified. The Arg719Trp mutation was de novo, as it was not found in the parents. In contrast, the Met349Thr mutation was inherited through the maternal grandmother. Six family members were carriers of this mutation but only the proband was clinically affected. Segregation and molecular analysis allowed us to assign the Met349Thr mutation to the maternal and the Arg719Trp de novo mutation to the paternal β-myosin allele. Thus, the patient has no normal myosin. We interpret these findings in terms of compound heterozygosity of a dominant (Arg719Trp) and a recessive (Met349Thr) mutation. Whereas a single mutated Arg719Trp allele would be sufficient to cause HCM, the concurrent Met349Thr mutation alone does not apparently induce the disease. Nevertheless, it conceivably contributes to the particularly severe phenotype. Received: 15 September 1997 / Accepted: 26 November 1997  相似文献   
58.
We present a genetic map for Xenopus tropicalis, consisting of 2886 Simple Sequence Length Polymorphism (SSLP) markers. Using a bioinformatics-based strategy, we identified unique SSLPs within the X. tropicalis genome. Scaffolds from X. tropicalis genome assembly 2.0 (JGI) were scanned for Simple Sequence Repeats (SSRs); unique SSRs were then tested for amplification and polymorphisms using DNA from inbred Nigerian and Ivory Coast individuals. Thus identified, the SSLPs were genotyped against a mapping cross panel of DNA samples from 190 F2 individuals. Nearly 4000 SSLPs were genotyped, yielding a 2886-marker genetic map consisting of 10 major linkage groups between 73 and 132 cM in length, and 4 smaller linkage groups between 7 and 40 cM. The total effective size of the map is 1658 cM, and the average intermarker distance for each linkage group ranged from 0.27 to 0.75 cM. Fluorescence In Situ Hybridization (FISH) was carried out using probes for genes located on mapped scaffolds to assign linkage groups to chromosomes. Comparisons of this map with the X. tropicalis genome Assembly 4.1 (JGI) indicate that the map provides representation of a minimum of 66% of the X. tropicalis genome, incorporating 758 of the approximately 1300 scaffolds over 100,000 bp. The genetic map and SSLP marker database constitute an essential resource for genetic and genomic analyses in X. tropicalis.  相似文献   
59.

Introduction  

Changes in bone mineral density (BMD) in the hand as evaluated by digital X-ray radiogrammetry (DXR) of the second to fourth metacarpal bones has been suggested to predict future joint damage in patients with rheumatoid arthritis (RA). This study's objective was to investigate whether DXR-BMD loss early in the course of the disease predicts the development of joint damage in RA patients followed for up to 20 years.  相似文献   
60.
We report the development and optimization of reagents for in-solution, hybridization-based capture of the mouse exome. By validating this approach in a multiple inbred strains and in novel mutant strains, we show that whole exome sequencing is a robust approach for discovery of putative mutations, irrespective of strain background. We found strong candidate mutations for the majority of mutant exomes sequenced, including new models of orofacial clefting, urogenital dysmorphology, kyphosis and autoimmune hepatitis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号