首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1739篇
  免费   160篇
  国内免费   1篇
  2023年   6篇
  2022年   23篇
  2021年   29篇
  2020年   19篇
  2019年   21篇
  2018年   29篇
  2017年   40篇
  2016年   62篇
  2015年   66篇
  2014年   81篇
  2013年   115篇
  2012年   118篇
  2011年   130篇
  2010年   82篇
  2009年   82篇
  2008年   105篇
  2007年   106篇
  2006年   81篇
  2005年   88篇
  2004年   78篇
  2003年   84篇
  2002年   64篇
  2001年   30篇
  2000年   12篇
  1999年   16篇
  1998年   30篇
  1997年   22篇
  1996年   19篇
  1995年   16篇
  1994年   16篇
  1993年   20篇
  1992年   13篇
  1991年   8篇
  1990年   8篇
  1989年   9篇
  1988年   15篇
  1987年   9篇
  1986年   12篇
  1985年   9篇
  1984年   10篇
  1983年   16篇
  1982年   10篇
  1980年   9篇
  1979年   5篇
  1977年   8篇
  1976年   8篇
  1975年   6篇
  1972年   4篇
  1971年   5篇
  1967年   5篇
排序方式: 共有1900条查询结果,搜索用时 15 毫秒
951.
1,25-(OH)2 vitamin D3 (1,25-(OH)2D3) exerts antiproliferative effects via cell cycle regulation in a variety of tumor cells, including prostate. We have previously shown that in the human prostate cancer cell line LN-CaP, 1,25-(OH)2D3 mediates an increase in cyclin-dependent kinase inhibitor p27Kip1 levels, inhibition of cyclin-dependent kinase 2 (Cdk2) activity, hypophosphorylation of retinoblastoma protein, and accumulation of cells in G1. In this study, we investigated the mechanism whereby 1,25-(OH)2D3 increases p27 levels. 1,25-(OH)2D3 had no effect on p27 mRNA levels or on the regulation of a 3.5-kb fragment of the p27 promoter. The rate of p27 protein synthesis was not affected by 1,25-(OH)2D3 as measured by luciferase activity driven by the 5'- and 3'-untranslated regions of p27 that regulate p27 protein synthesis. Pulse-chase analysis of 35S-labeled p27 revealed an increased p27 protein half-life with 1,25-(OH)2D3 treatment. Because Cdk2-mediated phosphorylation of p27 at Thr187 targets p27 for Skp2-mediated degradation, we examined the phosphorylation status of p27 in 1,25-(OH)2D3-treated cells. 1,25-(OH)2D3 decreased levels of Thr187 phosphorylated p27, consistent with inhibition of Thr187 phosphorylation-dependent p27 degradation. In addition, 1,25-(OH)2D3 reduced Skp2 protein levels in LNCaP cells. Cdk2 is activated in the nucleus by Cdk-activating kinase through Thr160 phosphorylation and by cdc25A phosphatase via Thr14 and Tyr15 dephosphorylation. Interestingly, 1,25-(OH)2D3 decreased nuclear Cdk2 levels as assessed by subcellular fractionation and confocal microscopy. Inhibition of Cdk2 by 1,25-(OH)2D3 may thus involve two mechanisms: 1) reduced nuclear Cdk2 available for cyclin binding and activation and 2) impairment of cyclin E-Cdk2-dependent p27 degradation through cytoplasmic mislocalization of Cdk2. These data suggest that Cdk2 mislocalization is central to the antiproliferative effects of 1,25-(OH)2D3.  相似文献   
952.
The divergence of premating behavior and morphology plays a primary role in speciation, and an understanding of the genetic architectures of these phenotypes is essential for the evaluation of models of the speciation process. However, our empirical knowledge of the genetics underlying speciation-related traits remains limited. In this article, we argue that a dissection of specific aspects of the genetic architecture of such traits in a comparative context can allow us to rule out some mechanisms of divergence. We discuss these ideas with reference to our investigation of intersexual communication behaviors involved in mate recognition in the Hawaiian cricket genus Laupala. Different species of Laupala sing distinctively and show species-specific acoustic preferences. We focus on the sister species Laupala paranigra and Laupala kohalensis, characterized by differences in these classic courtship phenotypes. We discuss our preliminary results on the directionality of effect of substituted alleles underlying these species differences. We then discuss these results in the context of historical inference, a necessary perspective for testing the genomic predictions made by theories of speciation that focus on evolution of mate recognition systems.  相似文献   
953.
Genotoxicity risk assessment: a proposed classification strategy   总被引:5,自引:0,他引:5  
Recent advances in genetic toxicity (mutagenicity) testing methods and in approaches to performing risk assessment are prompting a renewed effort to harmonize genotoxicity risk assessment across the world. The US Environmental Protection Agency (EPA) first published Guidelines for Mutagenicity Risk Assessment in 1986 that focused mainly on transmissible germ cell genetic risk. Somatic cell genetic risk has also been a risk consideration, usually in support of carcinogenicity assessments. EPA and other international regulatory bodies have published mutagenicity testing requirements for agents (pesticides, pharmaceuticals, etc.) to generate data for use in genotoxicity risk assessments. The scheme that follows provides a proposed harmonization approach in which genotoxicity assessments are fully developed within the risk assessment paradigm used by EPA, and sets out a process that integrates newer thinking in testing battery design with the risk assessment process. A classification strategy for agents based on inherent genotoxicity, dose-responses observed in the data, and an exposure analysis is proposed. The classification leads to an initial level of concern for genotoxic risk to humans. A total risk characterization is performed using all relevant toxicity data and a comprehensive exposure evaluation in association with the genotoxicity data. The result of this characterization is ultimately used to generate a final level of concern for genotoxic risk to humans. The final level of concern and characterized genotoxicity risk assessment are communicated to decision makers for possible regulatory action(s) and to the public.  相似文献   
954.
NifS-like proteins catalyze the formation of elemental sulfur (S) and alanine from cysteine (Cys) or of elemental selenium (Se) and alanine from seleno-Cys. Cys desulfurase activity is required to produce the S of iron (Fe)-S clusters, whereas seleno-Cys lyase activity is needed for the incorporation of Se in selenoproteins. In plants, the chloroplast is the location of (seleno) Cys formation and a location of Fe-S cluster formation. The goal of these studies was to identify and characterize chloroplast NifS-like proteins. Using seleno-Cys as a substrate, it was found that 25% to 30% of the NifS activity in green tissue in Arabidopsis is present in chloroplasts. A cDNA encoding a putative chloroplast NifS-like protein, AtCpNifS, was cloned, and its chloroplast localization was confirmed using immunoblot analysis and in vitro import. AtCpNIFS is expressed in all major tissue types. The protein was expressed in Escherichia coli and purified. The enzyme contains a pyridoxal 5' phosphate cofactor and is a dimer. It is a type II NifS-like protein, more similar to bacterial seleno-Cys lyases than to Cys desulfurases. The enzyme is active on both seleno-Cys and Cys but has a much higher activity toward the Se substrate. The possible role of AtCpNifS in plastidic Fe-S cluster formation or in Se metabolism is discussed.  相似文献   
955.
The Vpu protein of human immunodeficiency virus type 1 forms cation-selective ion channels and enhances the process of virion budding and release. Mutagenesis studies have shown that the N-terminal transmembrane domain primarily controls both of these activities. Here we report that the Vpu ion channel is inhibited by the amiloride derivatives 5-(N,N-hexamethylene)amiloride and 5-(N,N-dimethyl)amiloride but not by amiloride itself, nor by amantadine. Hexamethyleneamiloride also inhibits budding of virus-like particles from HeLa cells expressing HIV-1 Gag and Vpu proteins. These results confirm the link between Vpu ion channel activity and the budding process and also suggest that amiloride derivatives might have useful anti-HIV-1 properties.  相似文献   
956.
Microtubule dynamics are influenced by interactions of microtubules with cellular factors and by changes in the primary sequence of the tubulin molecule. Mutations of yeast beta-tubulin C354, which is located near the binding site of some antimitotic compounds, reduce microtubule dynamicity greater than 90% in vivo and in vitro. The resulting intrinsically stable microtubules allowed us to determine which, if any, cellular processes are dependent on dynamic microtubules. The average number of cytoplasmic microtubules decreased from 3 in wild-type to 1 in mutant cells. The single microtubule effectively located the bud site before bud emergence. Although spindles were positioned near the bud neck at the onset of anaphase, the mutant cells were deficient in preanaphase spindle alignment along the mother-bud axis. Spindle microtubule dynamics and spindle elongation rates were also severely depressed in the mutants. The pattern and extent of cytoplasmic microtubule dynamics modulation through the cell cycle may reveal the minimum dynamic properties required to support growth. The ability to alter intrinsic microtubule dynamics and determine the in vivo phenotype of cells expressing the mutant tubulin provides a critical advance in assessing the dynamic requirements of an essential gene function.  相似文献   
957.
A-kinase anchoring proteins (AKAPs) tether cyclic AMP-dependent protein kinases and thereby localize phosphorylation of target proteins and initiation of signal-transduction processes triggered by cyclic AMP. AKAPs can also be scaffolds for kinases and phosphatases and form macromolecular complexes with other proteins involved in signal transduction. Akap4 is transcribed only in the postmeiotic phase of spermatogenesis and encodes the most abundant protein in the fibrous sheath, a novel cytoskeletal structure present in the principal piece of the sperm flagellum. Previous studies indicated that cyclic AMP-dependent signaling processes are important in the regulation of sperm motility, and gene targeting was used here to test the hypothesis that AKAP4 is a scaffold for protein complexes involved in regulating flagellar function. Sperm numbers were not reduced in male mice lacking AKAP4, but sperm failed to show progressive motility and male mice were infertile. The fibrous sheath anlagen formed, but the definitive fibrous sheath did not develop, the flagellum was shortened, and proteins usually associated with the fibrous sheath were absent or substantially reduced in amount. However, the other cytoskeletal components of the flagellum were present and appeared fully developed. We conclude that AKAP4 is a scaffold protein required for the organization and integrity of the fibrous sheath and that effective sperm motility is lost in the absence of AKAP4 because signal transduction and glycolytic enzymes fail to become associated with the fibrous sheath.  相似文献   
958.
The roles of an aspartate and an arginine, which are completely conserved in the active sites of beta-class carbonic anhydrases, were investigated by steady-state kinetic analyses of replacement variants of the beta-class enzyme (Cab) from the archaeon Methanobacterium thermoautotrophicum. Previous kinetic analyses of wild-type Cab indicated a two-step zinc-hydroxide mechanism of catalysis in which the k(cat)/K(m) value depends only on the rate constants for the CO(2) hydration step, whereas k(cat) also depends on rate constants from the proton transfer step (K. S. Smith, N. J. Cosper, C. Stalhandske, R. A. Scott, and J. G. Ferry, J. Bacteriol. 182:6605-6613, 2000). The recently solved crystal structure of Cab shows the presence of a buffer molecule within hydrogen bonding distance of Asp-34, implying a role for this residue in the proton transport step (P. Strop, K. S. Smith, T. M. Iverson, J. G. Ferry, and D. C. Rees, J. Biol. Chem. 276:10299-10305, 2001). The k(cat)/K(m) values of Asp-34 variants were decreased relative to those of the wild type, although not to an extent which supports an essential role for this residue in the CO(2) hydration step. Parallel decreases in k(cat) and k(cat)/K(m) values for the variants precluded any conclusions regarding a role for Asp-34 in the proton transfer step; however, the k(cat) of the D34A variant was chemically rescued by replacement of 2-(N-morpholino)propanesulfonic acid buffer with imidazole at pH 7.2, supporting a role for the conserved aspartate in the proton transfer step. The crystal structure of Cab also shows Arg-36 with two hydrogen bonds to Asp-34. Arg-36 variants had both k(cat) and k(cat)/K(m) values that were decreased at least 250-fold relative to those of the wild type, establishing an essential function for this residue. Imidazole was unable to rescue the k(cat) of the R36A variant; however, partial rescue of the kinetic parameter was obtained with guanidine-HCl indicating that the guanido group of this residue is important.  相似文献   
959.
Two-photon fluorescence lifetime imaging is used to identify microdomains (1-25 microm) of two distinct pH values within the uppermost layer of the epidermis (stratum corneum). The fluorophore used is 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF), whose lifetime tau (pH 4.5, tau = 2.75 ns; pH 8.5, tau = 3.90 ns) is pH dependent over the pH range of the stratum corneum (pH 4.5 to pH 7.2). Hairless mice (SKH1-hrBR) are used as a model for human skin. Images (< or =50 microm x 50 microm) are acquired every 1.7 microm from the stratum corneum surface to the first viable layer (stratum granulosum). Acidic microdomains (average pH 6.0) of variable size (~1 microm in diameter with variable length) are detected within the extracellular matrix of the stratum corneum, whereas the intracellular space of the corneocytes in mid-stratum corneum (25 microm diameter) approaches neutrality (average pH 7.0). The surface is acidic. The average pH of the stratum corneum increases with depth because of a decrease in the ratio of acidic to neutral regions within the stratum corneum. The data definitively show that the stratum corneum acid mantle results from the presence of aqueous acidic pockets within the lipid-rich extracellular matrix.  相似文献   
960.
The hormone 1alpha,25-dihydroxyvitamin D (1alpha,25(OH)(2)D) inhibits growth and induces differentiation of prostate cells. The enzyme responsible for 1alpha,25(OH)(2)D synthesis, 25-hydroxyvitamin D (25(OH)D)-1alpha-hydroxylase (1alpha-OHase), has been demonstrated in human prostate cells. We compared the levels of 1alpha-OHase activity in prostate cancer cell lines, LNCaP, DU145 and PC-3 and in primary cultures of normal, cancerous and benign prostatic hyperplasia (BPH) prostate cells. We observed a marked decrease in 1alpha-OHase activity in prostate cancer cells, including an undetectable level of activity in LNCaP cells. Transient or stable transfection of 1alpha-OHase cDNA into LNCaP cells increased 1alpha-OHase activity from undetectable to 4.95pmole/mg+/-0.69pmole/mg and 5.8pmole/mg+/-0.7pmole/mg protein per hour, respectively. In response to 25(OH)D, the prohormone of 1alpha,25(OH)(2)D, the transfected LNCaP cells showed a significant inhibition of 3H-thymidine incorporation (37%+/-6% and 56%+/-4% at 10(-8)M for transiently and stably transfected cells, respectively). These findings support an important autocrine role for 1alpha,25(OH)(2)D in the prostate and suggest that the re-introduction of the 1alpha-OHase gene to prostate cancer cells, in conjunction with the systemic administration of 25(OH)D, constitutes an endocrine form of gene therapy that may be less toxic than the systemic administration of 1alpha,25(OH)(2)D.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号