首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1882篇
  免费   152篇
  国内免费   1篇
  2022年   21篇
  2021年   31篇
  2020年   14篇
  2019年   18篇
  2018年   27篇
  2017年   37篇
  2016年   55篇
  2015年   65篇
  2014年   80篇
  2013年   117篇
  2012年   114篇
  2011年   140篇
  2010年   75篇
  2009年   81篇
  2008年   109篇
  2007年   110篇
  2006年   92篇
  2005年   93篇
  2004年   89篇
  2003年   81篇
  2002年   69篇
  2001年   28篇
  2000年   16篇
  1999年   15篇
  1998年   31篇
  1997年   18篇
  1996年   17篇
  1995年   14篇
  1994年   14篇
  1993年   15篇
  1992年   9篇
  1991年   12篇
  1990年   11篇
  1989年   9篇
  1988年   14篇
  1987年   10篇
  1986年   13篇
  1985年   16篇
  1984年   14篇
  1983年   16篇
  1982年   9篇
  1980年   13篇
  1978年   10篇
  1977年   10篇
  1975年   7篇
  1973年   7篇
  1972年   8篇
  1971年   7篇
  1968年   6篇
  1939年   6篇
排序方式: 共有2035条查询结果,搜索用时 31 毫秒
91.
The inflammatory responses in many cell types are reduced by noradrenaline (NA) binding to beta-adrenergic receptors. We previously demonstrated that cortical inflammatory responses to aggregated amyloid beta (Abeta) are increased if NA levels were first depleted by lesioning locus ceruleus (LC) noradrenergic neurons, which replicates the loss of LC occurring in Alzheimer's disease. To examine the molecular basis for increased responses, we used the selective neurotoxin DSP4 to lesion the LC, and then examined levels of putative anti-inflammatory molecules. Inflammatory responses were achieved by injection of aggregated Abeta1-42 peptide and IL-1beta into frontal cortex, which induced neuronal inducible nitric oxide synthase (iNOS) and microglial IL-1beta expression. DSP4-treatment reduced basal levels of nuclear factor kappa B (NF-kappaB) inhibitory IkappaB proteins, and of heat shock protein (HSP)70. Inflammatory responses were prevented by co-injection (ibuprofen or ciglitzaone) or oral administration (pioglitazone) of peroxisome proliferator-activated receptor gamma (PPARgamma) agonists. Treatment with PPARgamma agonists restored IkappaBalpha, IkappaBbeta, and HSP70 levels to values equal or above those observed in control animals, and reduced activation of cortical NF-kappaB. These results suggest that noradrenergic depletion reduces levels of anti-inflammatory molecules which normally limit cortical responses to Abeta, and that PPARgamma agonists can reverse that effect. These findings suggest one mechanism by which PPARgamma agonists could provide benefit in neurological diseases having an inflammatory component.  相似文献   
92.
17beta-Estradiol activates endothelial nitric oxide synthase (eNOS), enhancing nitric oxide (NO) release from endothelial cells via the phosphatidylinositol 3-kinase (PI3-kinase)/Akt pathway. The upstream regulators of this pathway are unknown. We now demonstrate that 17beta-estradiol rapidly activates eNOS through Src kinase in human endothelial cells. The Src family kinase specific-inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2) abrogates 17beta-estradiol- but not ionomycin-stimulated NO release. Consistent with these results, PP2 blocked 17beta-estradiol-induced Akt phosphorylation but did not inhibit NO release from cells transduced with a constitutively active Akt. PP2 abrogated 17beta-estradiol-induced activation of PI3-kinase, indicating that the PP2-inhibitable kinase is upstream of PI3-kinase and Akt. A 17beta-estradiol-induced estrogen receptor/c-Src association correlated with rapid c-Src phosphorylation. Moreover, transfection of kinase-dead c-Src inhibited 17beta-estradiol-induced Akt phosphorylation, whereas constitutively active c-Src increased basal Akt phosphorylation. Estrogen stimulation of murine embryonic fibroblasts with homozygous deletions of the c-src, fyn, and yes genes failed to induce Akt phosphorylation, whereas cells maintaining c-Src expression demonstrated estrogen-induced Akt activation. Estrogen rapidly activated c-Src inducing an estrogen receptor, c-Src, and P85 (regulatory subunit of PI3-kinase) complex formation. This complex formation results in the successive activation of PI3-kinase, Akt, and eNOS with consequent enhanced NO release, implicating c-Src as a critical upstream regulator of the estrogen-stimulated PI3-kinase/Akt/eNOS pathway.  相似文献   
93.
Phenotype-based identification of mouse chromosome instability mutants   总被引:1,自引:0,他引:1  
There is increasing evidence that defects in DNA double-strand-break (DSB) repair can cause chromosome instability, which may result in cancer. To identify novel DSB repair genes in mice, we performed a phenotype-driven mutagenesis screen for chromosome instability mutants using a flow cytometric peripheral blood micronucleus assay. Micronucleus levels were used as a quantitative indicator of chromosome damage in vivo. Among offspring derived from males mutagenized with the germline mutagen N-ethyl-N-nitrosourea (ENU), we identified a recessive mutation conferring elevated levels of spontaneous and radiation- or mitomycin C-induced micronuclei. This mutation, named chaos1 (chromosome aberration occurring spontaneously 1), was genetically mapped to a 1.3-Mb interval on chromosome 16 containing Polq, encoding DNA polymerase theta. We identified a nonconservative mutation in the ENU-derived allele, making it a strong candidate for chaos1. POLQ is homologous to Drosophila MUS308, which is essential for normal DNA interstrand crosslink repair and is unique in that it contains both a helicase and a DNA polymerase domain. While cancer susceptibility of chaos1 mutant mice is still under investigation, these data provide a practical paradigm for using a forward genetic approach to discover new potential cancer susceptibility genes using the surrogate biomarker of chromosome instability as a screen.  相似文献   
94.
Prolonged exposure of humans and experimental animals to the altered gravitational conditions of space flight has adverse effects on the lymphoid and erythroid hematopoietic systems. Although some information is available regarding the cellular and molecular changes in lymphocytes exposed to microgravity, little is known about the erythroid cellular changes that may underlie the reduction in erythropoiesis and resultant anemia. We now report a reduction in erythroid growth and a profound inhibition of erythropoietin (Epo)-induced differentiation in a ground-based simulated microgravity model system. Rauscher murine erythroleukemia cells were grown either in tissue culture vessels at 1 x g or in the simulated microgravity environment of the NASA-designed rotating wall vessel (RWV) bioreactor. Logarithmic growth was observed under both conditions; however, the doubling time in simulated microgravity was only one-half of that seen at 1 x g. No difference in apoptosis was detected. Induction with Epo at the initiation of the culture resulted in differentiation of approximately 25% of the cells at 1 x g, consistent with our previous observations. In contrast, induction with Epo at the initiation of simulated microgravity resulted in only one-half of this degree of differentiation. Significantly, the growth of cells in simulated microgravity for 24 h prior to Epo induction inhibited the differentiation almost completely. The results suggest that the NASA RWV bioreactor may serve as a suitable ground-based microgravity simulator to model the cellular and molecular changes in erythroid cells observed in true microgravity.  相似文献   
95.
Lipopolysaccharide (LPS) from gram-negative bacteria circulates in acute, subacute, and chronic conditions. It was hypothesized that LPS directly induces cardiac apoptosis. In adult rat ventricular myocytes (isolated with depyrogenated digestive enzymes to minimize tolerance), LPS (10 ng/ml) decreased the ratio of Bcl-2 to Bax at 12 h; increased caspase-3 activity at 16 h; and increased annexin V, propidium iodide, and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling staining at 24 h. Apoptosis was blocked by the caspase inhibitor benzyloxycarbonyl-valine-alanine-aspartate fluoromethylketone (Z-VAD-fmk), captopril, and angiotensin II type 1 receptor (AT(1)) inhibitor (losartan), but not by inhibitors of AT(2) receptors (PD-123319), tumor necrosis factor-alpha (TNFRII:Fc), or nitric oxide (N(G)-monomethyl-L-arginine). Angiotensin II (100 nmol/l) induced apoptosis similar to LPS without additive effects. LPS in vivo (1 mg/kg iv) increased apoptosis in left ventricular myocytes for 1-3 days, which dissipated after 1-2 wk. Losartan (23 mg. kg(-1). day(-1) in drinking water for 3 days) blocked LPS-induced in vivo apoptosis. In conclusion, low levels of LPS induce cardiac apoptosis in vitro and in vivo by activating AT(1) receptors in myocytes.  相似文献   
96.
Glucosamines are common components of many biologically important oligosaccharides. Reported is a systematic evaluation of glucosamine phosphates and trichloroacetimidates as glycosylating agents for the efficient construction of beta-(1 --> 6) glucosamine linkages. A set of differentially protected glucosamine donors incorporating a host of amine protecting groups, including 2-phthaloyl, benzyloxycarbonyl (Z), trichloroetheoxycarbonyl (Troc) and trichloroacetyl (TCA) protective groups, were prepared. Donors were initially evaluated for reactivity and protecting group compatibility in a solution-phase study with a model 6-hydroxyl galactose acceptor. Based on these results, glucosamine donor 10 was selected for the solution-phase synthesis of a beta-(1 --> 6)-glucosamine pentasaccharide. Finally, building block 10 proved well suited for use in the automated solid-phase synthesis of a repeating unit trisaccharide. An assessment of glucosamine phosphate donors as potential glycosylating agents for a variety of glucosamine linkages is also discussed.  相似文献   
97.
A competitive PCR (cPCR) assay was developed to quantify the nematophagous fungus Verticillium chlamydosporium in soil. A gamma-irradiated soil was seeded with different numbers of chlamydospores from V. chlamydosporium isolate 10, and samples were obtained at time intervals of up to 8 weeks. Samples were analyzed by cPCR and by plating onto a semiselective medium. The results suggested that saprophytic V. chlamydosporium growth did occur in soil and that the two methods detected different phases of growth. The first stage of growth, DNA replication, was demonstrated by the rapid increase in cPCR estimates, and the presumed carrying capacity (PCC) of the soil was reached after only 1 week of incubation. The second stage, an increase in fungal propagules presumably due to cell division, sporulation, and hyphal fragmentation, was indicated by a less rapid increase in CFU, and 3 weeks was required to reach the PCC. Experiments with field soil revealed that saprophytic fungal growth was limited, presumably due to competition from the indigenous soil microflora, and that the PCR results were less variable than the equivalent plate count results. In addition, the limit of detection of V. chlamydosporium in field soil was lower than that in gamma-irradiated soil, suggesting that there was a background population of the fungus in the field, although the level was below the limit of detection. Tomatoes were infected with the root knot nematode (RKN) or the potato cyst nematode (PCN) along with a PCN-derived isolate of the fungus (V. chlamydosporium isolate Jersey). Increases in fungal growth were observed in the rhizosphere of PCN-infested plants but not in the rhizosphere of RKN-infested plants after 14 weeks using cPCR. In this paper we describe for the first time PCR-based quantification of a fungal biological control agent for nematodes in soil and the rhizosphere, and we provide evidence for nematode host specificity that is highly relevant to the biological control efficacy of this fungus.  相似文献   
98.
Fluorescence correlation spectroscopy (FCS) enables direct observation of the translational diffusion of single fluorescent molecules in solution. When fluorescent hapten binds to antibody, analysis of FCS data yields the fractional amounts of free and bound hapten, allowing determination of the equilibrium binding constant. Equilibrium dissociation constants of anti-digoxin antibodies and corresponding fluorescein-labeled digoxigenin obtained by FCS and fluorescence polarization measurements are identical. It is also possible to follow a competitive displacement of the tracer from the antibody by unlabeled hapten using FCS in an immunoassay format. The fluorescence polarization immunoassay for vancomycin detection was used to test the FCS approach. Fitting of the FCS data for the molar fractions of free and bound fluorescein-labeled vancomycin yielded a calibration curve which could serve for determination of the vancomycin concentration in biological samples.  相似文献   
99.
Killer cell Ig-like receptors (KIR) are MHC class I-binding immunoreceptors that can suppress activation of human NK cells through recruitment of the Src homology 2-containing protein tyrosine phosphatase-1 (SHP-1) to two immunoreceptor tyrosine-based inhibitory motifs (ITIMs) in their cytoplasmic domains. KIR2DL4 (2DL4; CD158d) is a structurally distinct member of the KIR family, which is expressed on most, if not all, human NK cells. 2DL4 contains only one ITIM in its cytoplasmic domain and an arginine in its transmembrane region, suggesting both inhibitory and activating functions. While 2DL4 can activate IFN-gamma production, dependent upon the transmembrane arginine, the function of the single ITIM of 2DL4 remains unknown. In this study, tandem ITIMs of KIR3DL1 (3DL1) and the single ITIM of 2DL4 were directly compared in functional and biochemical assays. Using a retroviral transduction method, we show in human NK cell lines that 1) the single ITIM of 2DL4 efficiently inhibits natural cytotoxicity responses; 2) the phosphorylated single ITIM recruits SHP-2 protein tyrosine phosphatase, but not SHP-1 in NK cells; 3) expression of dominant-negative SHP-1 does not block the ability of 2DL4 to inhibit natural cytotoxicity; 4) surprisingly, mutation of the tyrosine within the single ITIM does not completely abolish inhibitory function; and 5) this correlates with weak SHP-2 binding to the mutant ITIM of 2DL4 in NK cells and a corresponding nonphosphorylated ITIM peptide in vitro. These results reveal new aspects of the KIR-inhibitory pathway in human NK cells, which are SHP-1 and phosphotyrosine independent.  相似文献   
100.
The Golgi apparatus of plant cells is thought to be the main site of synthesis of cell wall matrix polysaccharides and the terminal glycosylation of glycoproteins. Much of this evidence still depends on earlier biochemical studies employing subcellular fractionation. However acquiring pure Golgi membranes is still difficult and the question of spatial organisation of glycosyl transferases can be addressed by immunolocation of the enzymes. An antibody to a xylan synthase-associated polypeptide from French bean, the enzyme which synthesises the core polysaccharide for secondary wall xylan, has been raised and shown to inhibit its activity. Xylan is deposited in secondary thickenings and the xylan synthase was only detected in appreciable amounts in developing xylem cells. The location within the Golgi stack was observed throughout the dictyosomes. Some enzyme subunits were also detected in post-Golgi vesicles. A second antibody to a non-catalytic M(r) 65000 subunit of beta 1,3- glucan (callose) synthase was used for a comparative study. Although the bulk of this enzyme has been detected in previous studies at plasmamembrane-wall interfaces in sieve plates and stressed tissue, a Golgi-location can be observed in root tip meristematic cells during cell plate formation. The enzyme was present throughout the stacks. Callose was also immunolocated in a similar manner to xylan in secondary walls and thickenings and in pits in developing xylem. In these cells, the callose synthase was detected at the surface of the growing thickenings and the plasmamembrane within the pits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号