首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   6篇
  46篇
  2018年   1篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   2篇
  2011年   1篇
  2009年   3篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1997年   1篇
  1996年   1篇
  1992年   1篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   4篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1979年   3篇
  1978年   1篇
  1975年   1篇
  1971年   1篇
排序方式: 共有46条查询结果,搜索用时 0 毫秒
41.
The very useful radiolabeled ATP analog, adenosine 5-O-(3-[35S] thiotriphosphate) or [35S] ATPgammaS, has been prepared by a technique based on the thiophosphorylation of ADP that results in much higher yields of [35S] ATPgammaS than does a thiophosphate exchange method [1].  相似文献   
42.
The effects of dissociation of force-generating cross bridges on intracellular Ca(2+), pCa-force, and pCa-ATPase relationships were investigated in mouse skeletal muscle. Mechanical length perturbations were used to dissociate force-generating cross bridges in either intact or skinned fibers. In intact muscle, an impulse stretch or release, a continuous length vibration, a nonoverlap stretch, or an unloaded shortening during a twitch caused a transient increase in intracellular Ca(2+) compared with that in isometric controls and resulted in deactivation of the muscle. In skinned fibers, sinusoidal length vibrations shifted pCa-force and pCa-actomyosin ATPase rate relationships to higher Ca(2+) concentrations and caused actomyosin ATPase rate to decrease at submaximal Ca(2+) and increase at maximal Ca(2+) activation. These results suggest that dissociation of force-generating cross bridges during a twitch causes the off rate of Ca(2+) from troponin C to increase (a decrease in the Ca(2+) affinity of troponin C), thus decreasing the Ca(2+) sensitivity and resulting in the deactivation of the muscle. The results also suggest that the Fenn effect only exists at maximal but not submaximal force-activating Ca(2+) concentrations.  相似文献   
43.
44.
45.
Cyt1A is a cytolytic toxin from Bacillus thuringiensis var. israelensis. A computer model of the toxin in solution was generated and validated by resonance energy transfer (RET). The average distance between the two tryptophans (residues 158 and 161) and the fluorescently labeled cysteine 190 was 2.16 nm, which closely matched the distance predicted in computer simulations, 2.2 nm. The simulation results were able to explain two previous experimental observations: (i) amino-acid sequences of all Cyt toxins contain four blocks of highly conserved residues; and (ii) several single-point mutations drastically abrogated Cyt1A's toxicity. Selective randomization of atomic coordinates in the computer model revealed that the conserved blocks are important for proper folding and stability of the toxin molecule. Replacing lysine 225 with alanine, a mutation that renders the toxin inactive, was shown to result in breaking the hydrogen bonds between K225 and V126, L123, and Y189. Calculated Helmholtz free energy difference of the inactive mutation K225A was higher by 12 kcal/mol and 5 kcal/mol than the values for the benign mutations K118A and K198A, respectively, which indicates that the K225A mutant is significantly destabilized. The normal-mode and principal-component analyses revealed that in the wild-type Cyt1A the region around the residue K225 is quite stationary, due to the hydrogen-bond network around K225. In contrast, pronounced twisting and stretching were observed in the mutant K225A, and the region around the residue K225 becomes unstable. Our results indicate that conformational differences in this mutant spread far away from the site of the mutation, suggesting that the mutant is inactivated due to an overall change in conformation and diminished stability rather than due to a localized alteration of a “binding” or “active” site.  相似文献   
46.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号