首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   320篇
  免费   23篇
  2022年   2篇
  2021年   6篇
  2020年   2篇
  2019年   2篇
  2018年   3篇
  2017年   6篇
  2016年   3篇
  2015年   9篇
  2014年   17篇
  2013年   21篇
  2012年   24篇
  2011年   19篇
  2010年   10篇
  2009年   14篇
  2008年   24篇
  2007年   17篇
  2006年   18篇
  2005年   14篇
  2004年   13篇
  2003年   16篇
  2002年   13篇
  2001年   6篇
  2000年   2篇
  1999年   4篇
  1998年   2篇
  1997年   3篇
  1992年   6篇
  1991年   4篇
  1990年   5篇
  1989年   2篇
  1988年   3篇
  1987年   4篇
  1984年   4篇
  1983年   2篇
  1982年   7篇
  1981年   4篇
  1980年   2篇
  1979年   3篇
  1978年   2篇
  1977年   4篇
  1976年   2篇
  1974年   3篇
  1973年   2篇
  1972年   2篇
  1971年   2篇
  1968年   1篇
  1963年   1篇
  1961年   1篇
  1958年   1篇
  1954年   1篇
排序方式: 共有343条查询结果,搜索用时 15 毫秒
51.
52.
A variety of cancers, including malignant gliomas, show aberrant activation of STAT3, which plays a pivotal role in negative regulation of antitumor immunity. We hypothesized that inhibition of STAT3 signals would improve the efficacy of T cell adoptive transfer therapy by reversal of STAT3-induced immunosuppression in a murine GL261 intracranial glioma model. In vitro treatment of GL261 cells with JSI-124, a STAT3 inhibitor, reversed highly phosphorylated status of STAT3. Systemic i.p. administration of JSI-124 in glioma-bearing immunocompetent mice, but not athymic mice, resulted in prolonged survival, suggesting a role of adaptive immunity in the antitumor effect. Furthermore, JSI-124 promoted maturation of tumor-infiltrating CD11c(+) dendritic cells and activation of tumor-conditioned cytotoxic T cells, enhanced dendritic cells and GL261 production of CXCL-10, a critical chemokine for attraction of Tc1 cells. When i.p. JSI-124 administration was combined with i.v. transfer of Pmel-I mouse-derived type-1 CTLs (Tc1), glioma-bearing mice exhibited prolonged survival compared with i.p. JSI-124 or i.v. Tc1 therapy alone. Flow cytometric analyses of brain infiltrating lymphocytes revealed that JSI-124-treatment enhanced the tumor-homing of i.v. transferred Tc1 cells in a CXCL-10-dependent fashion. Systemic JSI-124 administration also up-regulated serum IL-15 levels, and promoted the persistence of transferred Tc1 in the host. These data suggest that systemic inhibition of STAT3 signaling can reverse the suppressive immunological environment of intracranial tumor bearing mice both systemically and locally, thereby promoting the efficacy of adoptive transfer therapy with Tc1.  相似文献   
53.
Arsenic trioxide (As(2)O(3)) is a potent inducer of apoptosis of leukemic cells in vitro and in vivo, but the mechanisms that mediate such effects are not well understood. We provide evidence that the Akt kinase is phosphorylated/activated during treatment of leukemia cells with As(2)O(3), to regulate downstream engagement of mammalian target of rapamycin (mTOR) and its effectors. Using cells with targeted disruption of both the Akt1 and Akt2 genes, we found that induction of arsenic trioxide-dependent apoptosis is strongly enhanced in the absence of these kinases, suggesting that Akt1/Akt2 are activated in a negative feedback regulatory manner, to control generation of As(2)O(3) responses. Consistent with this, As(2)O(3)-dependent pro-apoptotic effects are enhanced in double knock-out cells for both isoforms of the p70 S6 kinase (S6k1/S6k2), a downstream effector of Akt and mTOR. On the other hand, As(2)O(3)-dependent induction of apoptosis is diminished in cells with targeted disruption of TSC2, a negative upstream effector of mTOR. In studies using primary hematopoietic progenitors from patients with acute myeloid leukemia, we found that pharmacological inhibition of mTOR enhances the suppressive effects of arsenic trioxide on leukemic progenitor colony formation. Moreover, short interfering RNA-mediated inhibition of expression of the negative downstream effector, translational repressor 4E-BP1, partially reverses the effects of As(2)O(3). Altogether, these data provide evidence for a key regulatory role of the Akt/mTOR pathway in the generation of the effects of As(2)O(3), and suggest that targeting this signaling cascade may provide a novel therapeutic approach to enhance the anti-leukemic properties of As(2)O(3).  相似文献   
54.
Regulation of arsenic trioxide-induced cellular responses by Mnk1 and Mnk2   总被引:1,自引:0,他引:1  
Arsenic trioxide (As(2)O(3)) is a potent inducer of apoptosis of malignant cells in vitro and in vivo, but the precise mechanisms by which it mediates such effects are not well defined. We provide evidence that As(2)O(3) induces phosphorylation/activation of the MAPK signal-integrating kinases (Mnks) 1 and 2 in leukemia cell lines. Such activation is defective in cells with targeted disruption of the p38alpha MAPK gene, indicating that it requires upstream engagement of the p38 MAPK pathway. Studies using Mnk1(-/-) or Mnk2(-/-), or double Mnk1(-/-)Mnk2(-/-) knock-out cells, establish that activation of Mnk1 and Mnk2 by arsenic trioxide regulates downstream phosphorylation of the eukaryotic initiation factor 4E at Ser-209. Importantly, arsenic-induced apoptosis is enhanced in cells with targeted disruption of the Mnk1 and/or Mnk2 genes, suggesting that these kinases are activated in a negative-feedback regulatory manner, to control generation of arsenic trioxide responses. Consistent with this, pharmacological inhibition of Mnk activity enhances the suppressive effects of arsenic trioxide on primary leukemic progenitors from patients with acute leukemias. Taken together, these findings indicate an important role for Mnk kinases, acting as negative regulators for signals that control generation of arsenic trioxide-dependent apoptosis and antileukemic responses.  相似文献   
55.
Primordial germ cell development uses programmed cell death to remove abnormal, misplaced or excess cells. Precise control of this process is essential to maintain the continuity and integrity of the germline, and to prevent germ cells from colonizing locations other than the gonads. Through careful analyses of primordial germ cell distribution in developing Drosophila melanogaster embryos, we show that normal germ cell development involves extensive programmed cell death during stages 10-12 of embryogenesis. This germ cell death is mediated by Drosophila p53 (p53). Mutations in p53 result in excess primordial germ cells that are ectopic to the gonads. Initial movements of the germ cells appear normal, and wild-type numbers of germ cells populate the gonads, indicating that p53 is required for germ cell death, but not migration. To our knowledge, this is the first report of a loss-of-function phenotype for Drosophila p53 in a non-sensitized background. The p53 phenotype is remarkably similar to that of outsiders (out) mutants. Here, we show that the out gene encodes a putative monocarboxylate transporter. Mutations in p53 and out show nonallelic noncomplementation. Interestingly, overexpression of p53 in primordial germ cells of out mutant embryos partially suppresses the out germ cell death phenotype, suggesting that p53 functions in germ cells either downstream of out or in a closely linked pathway. These findings inform models in which signaling between p53 and cellular metabolism are integrated to regulate programmed cell death decisions.  相似文献   
56.
Expression of the glycoprotein hormone alpha-subunit gene occurs in the pituitary of all mammals but in placenta of only primates and horses. In humans, two different elements, termed upstream regulatory element (URE) and cAMP response element (CRE), are required for placenta-specific expression of the alpha-subunit gene. The URE binds a protein unique to placenta whereas the CRE binds a ubiquitous protein. Comparative analysis of the promoter-regulatory region of the alpha-subunit gene from a number of mammals indicates that a functional URE has been retained and suggests the potential for placenta-specific expression. Indirect evidence also indicates that the URE-binding protein has been conserved, even in placenta from mammals that fail to express the alpha-subunit gene. Lack of expression of the alpha-subunit gene in placenta of rodents and cattle can be traced to a single nucleotide change that renders the CRE-like sequence of these genes incapable of binding the protein that confers responsiveness to cAMP. In contrast, although expression of the alpha-subunit gene occurs in horse placenta, the promoter-regulatory region lacks a functional CRE but appears to retain a functional URE. This suggests that either a different accessory element and cognate protein interacts with the horse URE to provide placenta-specific expression or that a completely different set of regulatory elements is required for placenta-specific expression in horses.  相似文献   
57.
Age is the greatest risk factor for Parkinson''s disease (PD) which causes progressive loss of dopamine (DA) neurons, with males at greater risk than females. Intriguingly, some DA neurons are more resilient to degeneration than others. Increasing evidence suggests that vesicular glutamate transporter (VGLUT) expression in DA neurons plays a role in this selective vulnerability. We investigated the role of DA neuron VGLUT in sex‐ and age‐related differences in DA neuron vulnerability using the genetically tractable Drosophila model. We found sex differences in age‐related DA neurodegeneration and its associated locomotor behavior, where males exhibit significantly greater decreases in both DA neuron number and locomotion during aging compared with females. We discovered that dynamic changes in DA neuron VGLUT expression mediate these age‐ and sex‐related differences, as a potential compensatory mechanism for diminished DA neurotransmission during aging. Importantly, female Drosophila possess higher levels of VGLUT expression in DA neurons compared with males, and this finding is conserved across flies, rodents, and humans. Moreover, we showed that diminishing VGLUT expression in DA neurons eliminates females'' greater resilience to DA neuron loss across aging. This offers a new mechanism for sex differences in selective DA neuron vulnerability to age‐related DA neurodegeneration. Finally, in mice, we showed that the ability of DA neurons to achieve optimal control over VGLUT expression is essential for DA neuron survival. These findings lay the groundwork for the manipulation of DA neuron VGLUT expression as a novel therapeutic strategy to boost DA neuron resilience to age‐ and PD‐related neurodegeneration.  相似文献   
58.
Facultative CAM plants such as Mesembryanthemum crystallinum(ice plant) possess C3 metabolism when unstressed but developCAM under water or salt stress. When ice plants shift from C3metabolism to CAM, their stomata remain closed during the dayand open at night. Recent studies have shown that the stomatalresponse of ice plants in the C3 mode depends solely on theguard cell response to blue light. Recent evidence for a possiblerole of the xanthophyll, zeaxanthin in blue light photoreceptionof guard cells led to the question of whether changes in theregulation of the xanthophyll cycle in guard cells parallelthe shift from diurnal to nocturnal stomatal opening associatedwith CAM induction. In the present study, light-dependent stomatalopening and the operation of the xanthophyll cycle were characterizedin guard cells isolated from ice plants shifting from C3 metabolismto CAM. Stomata in epidermis detached from leaves with C3 metabolismopened in response to white light and blue light, but they didnot open in response to red light. Guard cells from these leavesshowed light-dependent conversion of violaxan-thin to zeaxanthin.Induction of CAM by NaCI abolished both white light- and bluelight-stimulated stomatal opening and light-dependent zeaxanthinformation. When guard cells isolated from leaves with CAM weretreated with 100 mM ascorbate, pH 5.0 for 1 h in darkness, guardcell zeaxanthin content increased at rates equal to or higherthan those stimulated by light in guard cells from leaves inthe C3 mode. The ascorbate effect indicates that chloroplastsin guard cells from leaves with CAM retain their competenceto operate the xanthophyll cycle, but that zeaxanthin formationdoes not take place in the light. The data suggest that inhibitionof light-dependent zeaxanthin formation in guard cells mightbe one of the regulatory steps mediating the shift from diurnalto nocturnal stomatal opening typical of plants with CAM. (Received July 5, 1996; Accepted December 12, 1996)  相似文献   
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号