首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   160篇
  免费   12篇
  国内免费   9篇
  2022年   1篇
  2019年   3篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2015年   13篇
  2014年   17篇
  2013年   12篇
  2012年   9篇
  2011年   13篇
  2010年   12篇
  2009年   9篇
  2008年   4篇
  2007年   7篇
  2006年   10篇
  2005年   3篇
  2004年   5篇
  2003年   5篇
  2001年   4篇
  2000年   2篇
  1999年   3篇
  1998年   7篇
  1997年   7篇
  1996年   4篇
  1995年   1篇
  1994年   6篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1982年   2篇
  1977年   2篇
  1955年   1篇
  1954年   2篇
排序方式: 共有181条查询结果,搜索用时 15 毫秒
121.
目的:建立高效液相系统肽图分析法,用于重组胰高血糖素样肽-1受体激动剂(rExendin-4)的质量控制。方法:应用高效液相系统摸索最佳胰蛋白酶切和色谱条件,并采用液质联用系统分析肽段的精确相对分子量和氨基酸序列。结果:根据酶切条件摸索,确定酶切条件为:rExendin-4原液与胰蛋白酶按照质量比为100:1混匀,37℃酶切4小时,根据肽段的色谱保留时间、相对分子质量及对其碰撞诱导解离质谱的解析结果,归属出肽图中各肽段所在的色谱峰,与理论值完全一致。结论:本法精确度高、重复性好、自动化程度高,能够用于rExendin-4原液肽图分析。  相似文献   
122.
Bacterial microcompartments (BMCs) sequester enzymes from the cytoplasmic environment by encapsulation inside a selectively permeable protein shell. Bioinformatic analyses indicate that many bacteria encode BMC clusters of unknown function and with diverse combinations of shell proteins. The genome of the halophilic myxobacterium Haliangium ochraceum encodes one of the most atypical sets of shell proteins in terms of composition and primary structure. We found that microcompartment shells could be purified in high yield when all seven H. ochraceum BMC shell genes were expressed from a synthetic operon in Escherichia coli. These shells differ substantially from previously isolated shell systems in that they are considerably smaller and more homogeneous, with measured diameters of 39 ± 2 nm. The size and nearly uniform geometry allowed the development of a structural model for the shells composed of 260 hexagonal units and 13 hexagons per icosahedral face. We found that new proteins could be recruited to the shells by fusion to a predicted targeting peptide sequence, setting the stage for the use of these remarkably homogeneous shells for applications such as three-dimensional scaffolding and the construction of synthetic BMCs. Our results demonstrate the value of selecting from the diversity of BMC shell building blocks found in genomic sequence data for the construction of novel compartments.  相似文献   
123.
目的:对比剂肾病(CIN)是介入治疗中常见并发症之一。由于对比剂肾病发病机制复杂,其确切的机制尚不明确,有研究认为应用渗透压相似的对比剂,高粘度组对比剂引起CIN的几率明显高于低粘度组。本研究探讨接受不同粘度对比剂冠状动脉造影检查的患者术后引起肾功能损害的差异及其可能的机制。方法:80例接受冠状动脉造影检查的患者随机分为两组。分别为20℃碘海醇组、37℃碘海醇组,每组各40例。分别于冠脉造影前8h、冠脉造影后48h采集同一患者肘正中静脉血进行血清肌酐(Scr)、血清胱抑素C(CysC)检测,并对数据进行统计学分析。结果:两组患者组间比较基本资料无明显差异,两组患者术后Ser、CysC较术前均升高,差异均有统计学意义(P〈0.05);20℃碘海醇组术后Scr较37℃碘海醇组升高不明显,差异无统计学意义(P〉0.05);20℃碘海醇组术后CysC较37℃碘海醇组升高明显,差异有统计学意义(P〈0.05)。结论:冠脉造影检查时.对比剂对患者的肾功能有损害;选择低粘度对比剂可能减少其对冠状动脉造影患者的肾功能的不良影响;其作用机制可能与对比剂改变血液粘滞性,从而影响肾血流有关。  相似文献   
124.
Toll‐like receptor 9 (TLR9) has a key role in the recognition of pathogen DNA in the context of infection and cellular DNA that is released from damaged cells. Pro‐inflammatory TLR9 signalling pathways in immune cells have been well investigated, but we have recently discovered an alternative pathway in which TLR9 temporarily reduces energy substrates to induce cellular protection from stress in cardiomyocytes and neurons. However, the mechanism by which TLR9 stimulation reduces energy substrates remained unknown. Here, we identify the calcium‐transporting ATPase, SERCA2 (also known as Atp2a2), as a key molecule for the alternative TLR9 signalling pathway. TLR9 stimulation reduces SERCA2 activity, modulating Ca2+ handling between the SR/ER and mitochondria, which leads to a decrease in mitochondrial ATP levels and the activation of cellular protective machinery. These findings reveal how distinct innate responses can be elicited in immune and non‐immune cells—including cardiomyocytes—using the same ligand‐receptor system.  相似文献   
125.
The carboxysome is a bacterial organelle found in all cyanobacteria; it encapsulates CO2 fixation enzymes within a protein shell. The most abundant carboxysome shell protein contains a single bacterial microcompartment (BMC) domain. We present in vivo evidence that a hypothetical protein (dubbed CcmP) encoded in all β-cyanobacterial genomes is part of the carboxysome. We show that CcmP is a tandem BMC domain protein, the first to be structurally characterized from a β-carboxysome. CcmP forms a dimer of tightly stacked trimers, resulting in a nanocompartment-containing shell protein that may weakly bind 3-phosphoglycerate, the product of CO2 fixation. The trimers have a large central pore through which metabolites presumably pass into the carboxysome. Conserved residues surrounding the pore have alternate side-chain conformations suggesting that it can be open or closed. Furthermore, CcmP and its orthologs in α-cyanobacterial genomes form a distinct clade of shell proteins. Members of this subgroup are also found in numerous heterotrophic BMC-associated gene clusters encoding functionally diverse bacterial organelles, suggesting that the potential to form a nanocompartment within a microcompartment shell is widespread. Given that carboxysomes and architecturally related bacterial organelles are the subject of intense interest for applications in synthetic biology/metabolic engineering, our results describe a new type of building block with which to functionalize BMC shells.  相似文献   
126.
In response to iron deficiency, cyanobacteria synthesize the iron stress-induced chlorophyll binding protein IsiA. This protein protects cyanobacterial cells against iron stress. It has been proposed that the protective role of IsiA is related to a blue light-induced nonphotochemical fluorescence quenching (NPQ) mechanism. In iron-replete cyanobacterial cell cultures, strong blue light is known to induce a mechanism that dissipates excess absorbed energy in the phycobilisome, the extramembranal antenna of cyanobacteria. In this photoprotective mechanism, the soluble Orange Carotenoid Protein (OCP) plays an essential role. Here, we demonstrate that in iron-starved cells, blue light is unable to quench fluorescence in the absence of the phycobilisomes or the OCP. By contrast, the absence of IsiA does not affect the induction of fluorescence quenching or its recovery. We conclude that in cyanobacteria grown under iron starvation conditions, the blue light-induced nonphotochemical quenching involves the phycobilisome OCP-related energy dissipation mechanism and not IsiA. IsiA, however, does seem to protect the cells from the stress generated by iron starvation, initially by increasing the size of the photosystem I antenna. Subsequently, the IsiA converts the excess energy absorbed by the phycobilisomes into heat through a mechanism different from the dynamic and reversible light-induced NPQ processes.  相似文献   
127.
Bacterial microcompartments (BMCs) are self-assembling organelles that sequester segments of biochemical pathways within a protein shell. Given their functional diversity, BMCs constitute a rich source of metabolic modules for applications in synthetic biology. The carboxysome, the cyanobacterial BMC for CO2 fixation, has attracted significant attention as a target for installation into chloroplasts and serves as the foundation for introducing other types of BMCs into plants. Carboxysome assembly involves a series of protein-protein interactions among at least six gene products to form a metabolic core, around which the shell assembles. This complexity creates significant challenges for the transfer, regulation, and assembly of carboxysomes, or any of the myriad of functionally distinct BMCs, into heterologous systems. To overcome this bottleneck, we constructed a chimeric protein in the cyanobacterium Synechococcus elongatus that structurally and functionally replaces four gene products required for carboxysome formation. The protein was designed based on protein domain interactions in the carboxysome core. The resulting streamlined carboxysomes support photosynthesis. This strategy obviates the need to regulate multiple genes and decreases the genetic load required for carboxysome assembly in heterologous systems. More broadly, the reengineered carboxysomes represent a proof of concept for a domain fusion approach to building multifunctional enzymatic cores that should be generally applicable to the engineering of BMCs for new functions and cellular contexts.  相似文献   
128.
The therapeutic effect of anti-cancer monoclonal antibodies stems from their capacity to opsonize targeted cancer cells with subsequent phagocytic removal, induction of antibody-dependent cell-mediated cytotoxicity (ADCC) or induction of complement-mediated cytotoxicity (CDC). The major immune effector cells involved in these processes are natural killer (NK) cells and granulocytes. The latter and most prevalent blood cell population contributes to phagocytosis, but is not effective in inducing ADCC. Here, we report that targeted delivery of the tumoricidal protein tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to granulocyte marker C-type lectin-like molecule-1 (CLL1), using fusion protein CLL1:TRAIL, equips granulocytes with high levels of TRAIL. Upon CLL1-selective binding of this fusion protein, granulocytes acquire additional TRAIL-mediated cytotoxic activity that, importantly, potentiates antibody-mediated cytotoxicity of clinically used therapeutic antibodies (e.g., rituximab, cetuximab). Thus, CLL1:TRAIL could be used as an adjuvant to optimize the clinical potential of anticancer antibody therapy by augmenting tumoricidal activity of granulocytes.  相似文献   
129.
曹彦  易艳荣 《生物磁学》2011,(10):1817-1820
目的:探讨SOCS-3在非酒精性脂肪肝病(NAFLD)发病中的作用以及吡格列酮的干预作用。方法:29只雄性SD大鼠随机分为正常对照组(8只),高脂饮食组(21只)。饲养8周后,从高质饮食组随机抽取5只大鼠证实造模成功后,将该组余下的16只大鼠继续以高脂饲料喂养,并随机分为NAFLD对照组(8只);吡格酮干预组(8只),予以吡格列酮3mg·kg^-1·d^-1灌胃。16周末,处死所有大鼠,检测血糖、血胰岛素、血脂、肝脏SOCS-3mRNA和SREBP-lcmRNA表达及肝脏病理学。结果:与正常对照组相比,NAFLD组血糖、血胰岛素、血脂、肝脏脂肪变水平及肝组织SOCS-3mRNA、SREBPlCmRNA表达显著上调。吡格列酮干预组sOCS.3mRNA、SREBP-1cmRNA表达较NAFLD组下调,且血糖、血胰岛素、血脂、肝脏脂肪变水平下降。SOCS-3mRNA表达水平与胰岛素抵抗指数、SREBP.1cmRNA表达水平、肝脂肪变成显著正相关。结论:SOCS-3可能通过胰岛素抵抗及上调肝组织SREBP-lcmRNA表达参与NAFLD发病,吡格列酮能抑制肝脏SOCS-3的表达,对NAFLD有一定治疗作用。  相似文献   
130.
Bacterial microcompartments (BMCs) are polyhedral bodies, composed entirely of proteins, that function as organelles in bacteria; they promote subcellular processes by encapsulating and co-localizing targeted enzymes with their substrates. The best-characterized BMC is the carboxysome, a central part of the carbon-concentrating mechanism that greatly enhances carbon fixation in cyanobacteria and some chemoautotrophs. Here we report the first structural insights into the carboxysome of Prochlorococcus, the numerically dominant cyanobacterium in the world's oligotrophic oceans. Bioinformatic methods, substantiated by analysis of gene expression data, were used to identify a new carboxysome shell component, CsoS1D, in the genome of Prochlorococcus strain MED4; orthologs were subsequently found in all cyanobacteria. Two independent crystal structures of Prochlorococcus MED4 CsoS1D reveal three features not seen in any BMC-domain protein structure solved to date. First, CsoS1D is composed of a fused pair of BMC domains. Second, this double-domain protein trimerizes to form a novel pseudohexameric building block for incorporation into the carboxysome shell, and the trimers further dimerize, forming a two-tiered shell building block. Third, and most strikingly, the large pore formed at the 3-fold axis of symmetry appears to be gated. Each dimer of trimers contains one trimer with an open pore and one whose pore is obstructed due to side-chain conformations of two residues that are invariant among all CsoS1D orthologs. This is the first evidence of the potential for gated transport across the carboxysome shell and reveals a new type of building block for BMC shells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号