首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   258篇
  免费   14篇
  272篇
  2022年   7篇
  2021年   8篇
  2020年   2篇
  2019年   5篇
  2018年   6篇
  2017年   3篇
  2016年   5篇
  2015年   8篇
  2014年   10篇
  2013年   10篇
  2012年   17篇
  2011年   27篇
  2010年   9篇
  2009年   5篇
  2008年   17篇
  2007年   13篇
  2006年   7篇
  2005年   11篇
  2004年   11篇
  2003年   7篇
  2002年   7篇
  2001年   4篇
  2000年   7篇
  1999年   2篇
  1998年   6篇
  1996年   2篇
  1995年   2篇
  1991年   4篇
  1990年   3篇
  1987年   3篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1980年   4篇
  1977年   6篇
  1976年   2篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1970年   1篇
  1968年   2篇
  1967年   1篇
  1966年   1篇
  1958年   1篇
  1957年   1篇
  1956年   1篇
  1939年   1篇
  1919年   1篇
  1915年   1篇
  1907年   1篇
排序方式: 共有272条查询结果,搜索用时 20 毫秒
71.
Resistance training at the load that maximizes peak power (Pmax) may produce greater increases in peak power than other loads. Pmax for lower-body lifts can occur with no loading but whether Pmax can be increased further with negative loading is unclear. The purpose of this investigation was therefore to determine lower-body Pmax (jump squat) using a spectrum of loads. Box squat 1 repetition maximum (1RM) was measured in 18 elite rugby-union players. Pmax was then determined using loads of -28 to 60%1RM. Elastic bands were used to unload body weight for negative loads. Jump squat Pmax occurred with no loading (body weight: 8,880 ± 2,186 W) in all but 2 subjects. There was a discontinuity in the power-load relationship for the jump squat, possibly because of the increased countermovement in the body weight jump. The self-selected depth (dip) before the propulsive phase of the jump was greater by 24 ± 11 to 40 ± 16% (moderate to large effect size) than all positive loads. These findings highlight methodological issues that need to be taken into consideration when comparing power outputs of loaded and unloaded jumps.  相似文献   
72.
Compared to species turnover, patterns of phylogenetic turnover provide extra information about the spatial structure of biodiversity, for example providing more informative comparisons between the biota of sites which share no species. To harness this information for broad‐scale spatial analysis, we present phylo‐GDM, a technique for interpolating the spatial structure of phylogenetic turnover between sampled locations in relation to environment, based on generalised dissimilarity modelling (GDM). Using a database of over 150 000 location records for 114 myobatrachid frog species in Australia, linked to a species‐level phylogeny inferred from 2467 base pairs of mitochondrial DNA, we calculated species and phylogenetic turnover between pairs of sites. We show how phylogenetic turnover extended the range of informative comparison of compositional turnover to more biologically and environmentally dissimilar sites. We generated GDM models which predict species and phylogenetic turnover across Australia, and tested the fit of models for different ages within the phylogeny to find the phylogenetic tree depth at which the relationship to current day environment is greatest. We also incorporated explanatory variables based on biogeographic patterns, to represent broad‐scale turnover resulting from divergent evolutionary histories. We found that while the predictive power of our models was lower for full phylogenetic turnover than for species turnover, models based on the more recent components of the phylogeny (closer to the tips) outperformed species models and full phylogenetic models. Phylo‐GDM has considerable potential as a method for incorporating phylogenetic relationships into biodiversity analyses in ways not previously possible. Because phylogenies do not require named taxa, phylo‐GDM may also provide a means of including lineages with poorly resolved taxonomy (e.g. from metagenomic sequencing) into biodiversity planning and phylogeographic analysis.  相似文献   
73.
74.
The non-steroidal ecdysone agonist RH 5849 (1,2-dibenzoyl-1-tert-butylhydrazine) was found to inhibit in a dose-response and apparently competitive fashion the cytochrome P-450 dependent ecdysone 20-monooxygenase activity in the midgut of wandering stage last instar larvae of the tobacco hornworn, Manduca sexta. More effectively on a per molar basis than the naturally occurring molting hormones ecdysone and 20-hydroxyecdysone, RH 5849 was also found to elicit the dramatic 50-fold increase in midgut steroid hydroxylase activity (which normally occurs with the onset of the wandering stage) when injected into competent head or thoracic ligated pre-wandering last instar larvae. These data support and extend the potential usefulness of RH 5849 as a pharmacological probe for further investigating the actions of ecdysteroids and their role(s) in the regulation of ecdysteroid monooxygenases.  相似文献   
75.
76.
77.
78.
79.
    
Body shape is predicted to differ among species for functional reasons and in relation to environmental niche and phylogenetic history. We quantified morphological differences in shape and size among 98.5% of the 129 species and all 21 genera of the Australo‐Papuan endemic myobatrachid frogs to test the hypothesis that habitat type predicts body shape in this radiation. We tested this hypothesis in a phylogenetic context at two taxonomic levels: across the entire radiation and within the four largest genera. Thirty‐four external measurements were taken on 623 museum specimens representing 127 species. Data for seven key environmental variables relevant to anurans were assembled for all Australian‐distributed species based on species' distributions and 131,306 locality records. The Australo‐Papuan myobatrachid radiation showed high diversity in adult body size, ranging from minute (15 mm snout–vent length) to very large species (92 mm), and shape, particularly sin relative limb length. Five main morphological and environmental summary variables displayed strong phylogenetic signal. There was no clear relationship between body size and environmental niche, and this result persisted following phylogenetic correction. For most species, there was a better match between environment/habitat and body shape, but this relationship did not persist following phylogenetic correction. At a broad level, species fell into three broad groups based on environmental niche and body shape: 1) species in wet habitats with relatively long limbs, 2) species in arid environments with relatively short limbs (many of which are forward or backward burrowers) and 3) habitat generalist species with a conservative body shape. However, these patterns were not repeated within the four largest genera ? Crinia, Limnodynastes, Pseudophryne and Uperoleia. Each of these genera displayed a highly conservative anuran body shape, yet individual species were distributed across the full spectrum of Australian environments. Our results suggest that phylogenetic legacy is important in the evolution of body size and shape in Australian anurans, but also that the conservative body plan of many frogs works well in a wide variety of habitats.  相似文献   
80.
    
It is a well-known phenomenon that islands can support populations of gigantic or dwarf forms of mainland conspecifics, but the variety of explanatory hypotheses for this phenomenon have been difficult to disentangle. The highly venomous Australian tiger snakes (genus Notechis) represent a well-known and extreme example of insular body size variation. They are of special interest because there are multiple populations of dwarfs and giants and the age of the islands and thus the age of the tiger snake populations are known from detailed sea level studies. Most are 5000-7000 years old and all are less than 10,000 years old. Here we discriminate between two competing hypotheses with a molecular phylogeography dataset comprising approximately 4800 bp of mtDNA and demonstrate that populations of island dwarfs and giants have evolved five times independently. In each case the closest relatives of the giant or dwarf populations are mainland tiger snakes, and in four of the five cases, the closest relatives are also the most geographically proximate mainland tiger snakes. Moreover, these body size shifts have evolved extremely rapidly and this is reflected in the genetic divergence between island body size variants and mainland snakes. Within south eastern Australia, where populations of island giants, populations of island dwarfs, and mainland tiger snakes all occur, the maximum genetic divergence is only 0.38%. Dwarf tiger snakes are restricted to prey items that are much smaller than the prey items of mainland tiger snakes and giant tiger snakes are restricted to seasonally available prey items that are up three times larger than the prey items of mainland tiger snakes. We support the hypotheses that these body size shifts are due to strong selection imposed by the size of available prey items, rather than shared evolutionary history, and our results are consistent with the notion that adaptive plasticity also has played an important role in body size shifts. We suggest that plasticity displayed early on in the occupation of these new islands provided the flexibility necessary as the island's available prey items became more depauperate, but once the size range of available prey items was reduced, strong natural selection followed by genetic assimilation worked to optimize snake body size. The rate of body size divergence in haldanes is similar for dwarfs (h(g) = 0.0010) and giants (h(g) = 0.0020-0.0025) and is in line with other studies of rapid evolution. Our data provide strong evidence for rapid and repeated morphological divergence in the wild due to similar selective pressures acting in different directions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号