首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1365篇
  免费   73篇
  2022年   7篇
  2021年   16篇
  2020年   7篇
  2019年   17篇
  2018年   11篇
  2017年   9篇
  2016年   19篇
  2015年   41篇
  2014年   40篇
  2013年   124篇
  2012年   67篇
  2011年   63篇
  2010年   34篇
  2009年   39篇
  2008年   63篇
  2007年   77篇
  2006年   63篇
  2005年   65篇
  2004年   75篇
  2003年   63篇
  2002年   37篇
  2001年   60篇
  2000年   53篇
  1999年   39篇
  1998年   12篇
  1997年   15篇
  1996年   9篇
  1995年   10篇
  1994年   7篇
  1993年   15篇
  1992年   30篇
  1991年   32篇
  1990年   21篇
  1989年   23篇
  1988年   18篇
  1987年   15篇
  1986年   10篇
  1985年   15篇
  1984年   15篇
  1983年   6篇
  1982年   7篇
  1981年   9篇
  1979年   6篇
  1978年   11篇
  1977年   16篇
  1976年   5篇
  1974年   10篇
  1973年   7篇
  1972年   5篇
  1968年   3篇
排序方式: 共有1438条查询结果,搜索用时 796 毫秒
81.
The point of maximum activity is specific to a particular substrate-enzyme system but may vary with different substrates and the same enzyme. The specificity of enzymes has, however, been generally reported only at their "optimal" pH. In this article, we introduce the Michaelis-Menten equation taking pH into account, and apply it to the pH-activity profile of the thermolysin-catalyzed dipeptide synthesis. It has been reported to date that the pH-activity profile of thermolysin follows a bell-shaped curve with a maximal activity at or near pH 7.0. The profiles obtained in this study, however, indicated that the optimal pH varied from 5.8 (for F-AspPheOMe) to 7.3 (for Z-ArgPheOMe), and the order of thermolysin activity was greatly dependent on the pH of reaction media. We have succeeded in evaluating the substrates-induced change of the dissociation states of the active site of thermolysin using the hydrophobicity of substrates. We have obtained apparent kinetic parameters which are independent of the pH of reaction media. The apparent specificity of thermolysin which were independent of pH of the reaction media was in order L-Leu > L-Asp > L-Arg > L-Ala > L-Gly > L-Val and Z > Boc = F at P1 and P2 positions, respectively.  相似文献   
82.
Smad7 is an inhibitory Smad that acts as a negative regulator of signaling by the transforming growth factor-beta (TGF-beta) superfamily proteins. Smad7 is induced by TGF-beta, stably interacts with activated TGF-beta type I receptor (TbetaR-I), and interferes with the phosphorylation of receptor-regulated Smads. Here we show that Smurf1, an E3 ubiquitin ligase for bone morphogenetic protein-specific Smads, also interacts with Smad7 and induces Smad7 ubiquitination and translocation into the cytoplasm. In addition, Smurf1 associates with TbetaR-I via Smad7, with subsequent enhancement of turnover of TbetaR-I and Smad7. These results thus reveal a novel function of Smad7, i.e. induction of degradation of TbetaR-I through recruitment of an E3 ligase to the receptor.  相似文献   
83.
84.
85.
Endonuclease-induced DNA fragmentation is a hallmark of apoptosis. DNase gamma (DNase ) was recently identified as one of the endonucleases responsible for apoptotic DNA fragmentation. In this study, immunohistochemistry for DNase was performed on paraffin sections of rodent liver in well-defined models of hepatocyte apoptosis induced by Fas antibody (Fas) or cycloheximide (CHX), and necrosis induced by lipopolysaccharide (LPS) or carbon tetrachloride (CCl4). DNase immunoreactivity was compared with TdT-mediated dUTP nick-end labeling (TUNEL) reactivity. Our results showed TUNEL reactivity in both apoptotic and necrotic hepatocytes. DNase immunoreactivity was not detected during LPS-induced or CCl4-induced hepatocyte necrosis. In contrast, it was evident during CHX-induced, but not Fas-induced, apoptotic DNA fragmentation. These findings suggest that DNase plays an important role in Fas-independent apoptotic DNA fragmentation in hepatocytes.  相似文献   
86.
Several studies have addressed the importance of various ubiquitin-like (UBL) post-translational modifiers. These UBLs are covalently linked to most, if not all, target protein(s) through an enzymatic cascade analogous to ubiquitylation, consisting of E1 (activating), E2 (conjugating), and E3 (ligating) enzymes. In this report, we describe the identification of a novel ubiquitin-fold modifier 1 (Ufm1) with a molecular mass of 9.1 kDa, displaying apparently similar tertiary structure, although lacking obvious sequence identity, to ubiquitin. Ufm1 is first cleaved at the C-terminus to expose its conserved Gly residue. This Gly residue is essential for its subsequent conjugating reactions. The C-terminally processed Ufm1 is activated by a novel E1-like enzyme, Uba5, by forming a high-energy thioester bond. Activated Ufm1 is then transferred to its cognate E2-like enzyme, Ufc1, in a similar thioester linkage. Ufm1 forms several complexes in HEK293 cells and mouse tissues, revealing that it conjugates to the target proteins. Ufm1, Uba5, and Ufc1 are all conserved in metazoa and plants but not in yeast, suggesting its potential roles in various multicellular organisms.  相似文献   
87.
SCF(Fbs1) is a ubiquitin ligase that functions in the endoplasmic reticulum (ER)-associated degradation pathway. Fbs1/Fbx2, a member of the F-box proteins, recognizes high-mannose oligosaccharides. Efficient binding to an N-glycan requires di-N-acetylchitobiose (chitobiose). Here we report the crystal structures of the sugar-binding domain (SBD) of Fbs1 alone and in complex with chitobiose. The SBD is composed of a ten-stranded antiparallel beta-sandwich. The structure of the SBD-chitobiose complex includes hydrogen bonds between Fbs1 and chitobiose and insertion of the methyl group of chitobiose into a small hydrophobic pocket of Fbs1. Moreover, NMR spectroscopy has demonstrated that the amino acid residues adjoining the chitobiose-binding site interact with the outer branches of the carbohydrate moiety. Considering that the innermost chitobiose moieties in N-glycans are usually involved in intramolecular interactions with the polypeptide moieties, we propose that Fbs1 interacts with the chitobiose in unfolded N-glycoprotein, pointing the protein moiety toward E2 for ubiquitination.  相似文献   
88.
We examined the role of matrix metalloproteinases (MMPs), tissue inhibitors of MMP (TIMPs), and plasminogen activator (PA) in transmyocardial laser revascularization (TMLR)-induced angiogenesis. TMLR was accomplished with a carbon dioxide laser in seven dogs whose left anterior descending coronary artery (LAD) was ligated. Seven control dogs underwent only LAD ligation, and four dogs underwent a sham operation, consisting only of a left thoracotomy. Two weeks later, transmural myocardial samples were harvested from the distributions of the LAD and the left circumflex artery for substrate zymography, immunohistochemical staining, and in situ zymography. MMP-1, MMP-2, TIMP-1, TIMP-2, and urokinase-type PA levels in the distribution of the LAD were higher in the laser group than in the control or sham group. Counts of von Willebrand factor-positive microvessels and smooth muscle alpha-actin-positive arterioles demonstrated that the angiogenesis and ateriogenesis was promoted in the laser group and correlated directly with the number of MMP-stained microvessels. We conclude that TMLR induces the expression of MMPs, TIMPs, and urokinase-type PA and that these proteinases play an important role in angiogenesis after TMLR.  相似文献   
89.
Ubiquitin (Ub) ligation is implicated in active protein metabolism and subcellular trafficking and its impairment is involved in various neurologic diseases. In rat brain, we identified two novel Ub ligases, Momo and Sakura, carrying double zinc finger motif and RING finger domain. Momo expression is enriched in the brain gray matter and testis, and Sakura expression is more widely detected in the brain white matter as well as in many peripheral organs. Both proteins associate with the cell membranes of neuronal and/or glial cells. We examined their Ub ligase activity in vivo and in vitro using viral expression vectors carrying myc-tagged Momo and Sakura. Overexpression of either Momo or Sakura in mixed cortical cultures increased total polyubiquitination levels. In vitro ubiquitination assay revealed that the combination of Momo and UbcH4 and H5c, or of Sakura and UbcH4, H5c and H6 is required for the reaction. Deletion mutagenesis suggested that the E3 Ub ligase activity of Momo and Sakura depended on their C-terminal domains containing RING finger structure, while their N-terminal domains influenced their membrane association. In agreement, Sakura associating with the membrane was specifically palmitoylated. Although the molecular targets of their Ub ligation remain to be identified, these findings imply a novel function of the palmitoylated E3 Ub ligase(s).  相似文献   
90.
Amyloid precursor protein (APP), the precursor of Abeta, has been shown to function as a cell surface receptor that mediates neuronal cell death by anti-APP antibody. The c-Jun N-terminal kinase (JNK) can mediate various neurotoxic signals, including Abeta neurotoxicity. However, the relationship of APP-mediated neurotoxicity to JNK is not clear, partly because APP cytotoxicity is Abeta independent. Here we examined whether JNK is involved in APP-mediated neuronal cell death and found that: (i) neuronal cell death by antibody-bound APP was inhibited by dominant-negative JNK, JIP-1b and SP600125, the specific inhibitor of JNK, but not by SB203580 or PD98059; (ii) constitutively active (ca) JNK caused neuronal cell death and (iii) the pharmacological profile of caJNK-mediated cell death closely coincided with that of APP-mediated cell death. Pertussis toxin (PTX) suppressed APP-mediated cell death but not caJNK-induced cell death, which was suppressed by Humanin, a newly identified neuroprotective factor which inhibits APP-mediated cytotoxicity. In the presence of PTX, the PTX-resistant mutant of Galphao, but not that of Galphai, recovered the cytotoxic action of APP. These findings demonstrate that JNK is involved in APP-mediated neuronal cell death as a downstream signal transducer of Go.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号