首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   608篇
  免费   67篇
  2021年   8篇
  2020年   6篇
  2018年   5篇
  2016年   9篇
  2015年   16篇
  2014年   15篇
  2013年   17篇
  2012年   28篇
  2011年   26篇
  2010年   12篇
  2009年   15篇
  2008年   34篇
  2007年   36篇
  2006年   31篇
  2005年   33篇
  2004年   36篇
  2003年   25篇
  2002年   13篇
  2001年   19篇
  2000年   18篇
  1999年   11篇
  1998年   12篇
  1997年   7篇
  1996年   4篇
  1995年   7篇
  1994年   6篇
  1993年   12篇
  1992年   20篇
  1991年   13篇
  1990年   12篇
  1989年   11篇
  1988年   15篇
  1987年   9篇
  1986年   8篇
  1985年   9篇
  1984年   14篇
  1983年   8篇
  1982年   5篇
  1979年   5篇
  1978年   9篇
  1975年   3篇
  1974年   5篇
  1973年   6篇
  1972年   3篇
  1971年   7篇
  1970年   4篇
  1969年   4篇
  1966年   4篇
  1960年   3篇
  1953年   3篇
排序方式: 共有675条查询结果,搜索用时 15 毫秒
51.
A density functional theory account of the changes in FeNO bonding that occur in response to both bonded and nonbonded structural perturbations is reported for a series of {FeNO}(6) heme-thiolate model complexes. Using [Fe(porphine)(SCH(3))NO] as the reference complex, we constructed models to mimic equatorial (cis), distal, and proximal influences of protein environments. Overall, the results from these calculations reveal that the Fe-NO and N-O bond strengths change in the same direction upon variations in structure and environment. These bonding changes are manifested in unique direct correlations between the Fe-NO and N-O vibrational frequencies and bond lengths, as evidenced by their positive slopes (slopes of the familiar inverse or backbonding correlations are negative). The electronic origin of the direct correlations appears to derive from the electron density distribution in high-energy molecular orbitals. This variability modulates the FeNO antibonding character throughout the triatomic FeNO moiety. The results of this study suggest that the stabilities and reactivities of {FeNO}(6) centers in heme-thiolate enzymes can be modulated over a significant range through a variety of bonded and nonbonded means.  相似文献   
52.
53.
Galls are anomalies in plant development of parasitic origin that affect the cellular differentiation or growth and represent a remarkable plant–parasite interaction. Byrsonima sericea DC. (Malpighiaceae) is a super host of several different types of gall in both vegetative and reproductive organs. The existence of galls in reproductive organs and their effects on the host plant are seldom described in the literature. In this paper, we present a novel study of galls in plants of the Neotropical region: the ‘witches' broom’ galls developed in floral structures of B. sericea. The unaffected inflorescences are characterised by a single indeterminate main axis with spirally arranged flower buds. The flower buds developed five unaffected brownish hairy sepals and five pairs of elliptical yellow elaiophores, five yellow fringed petals, 10 stamens and a pistil with superior tricarpellar and trilocular ovary. The affected inflorescences showed changes in architecture, with branches arising from the main axis and flower buds. The flower buds exhibited several morphological and anatomical changes. The sepals, petals and carpels converted into leaf‐like structures after differentiation. Stamens exhibited degeneration of the sporogenous tissue and structures containing hyphae and spores. The gynoecium did not develop, forming a central meristematic region, from which emerges the new inflorescence. In this work, we discuss the several changes in development of reproductive structures caused by witches' broom galls and their effects on reproductive success of the host plants.  相似文献   
54.
Open resource metagenomics: a model for sharing metagenomic libraries   总被引:1,自引:0,他引:1  
Both sequence-based and activity-based exploitation of environmental DNA have provided unprecedented access to the genomic content of cultivated and uncultivated microorganisms. Although researchers deposit microbial strains in culture collections and DNA sequences in databases, activity-based metagenomic studies typically only publish sequences from the hits retrieved from specific screens. Physical metagenomic libraries, conceptually similar to entire sequence datasets, are usually not straightforward to obtain by interested parties subsequent to publication. In order to facilitate unrestricted distribution of metagenomic libraries, we propose the adoption of open resource metagenomics, in line with the trend towards open access publishing, and similar to culture- and mutant-strain collections that have been the backbone of traditional microbiology and microbial genetics. The concept of open resource metagenomics includes preparation of physical DNA libraries, preferably in versatile vectors that facilitate screening in a diversity of host organisms, and pooling of clones so that single aliquots containing complete libraries can be easily distributed upon request. Database deposition of associated metadata and sequence data for each library provides researchers with information to select the most appropriate libraries for further research projects. As a starting point, we have established the Canadian MetaMicroBiome Library (CM2BL [1]). The CM2BL is a publicly accessible collection of cosmid libraries containing environmental DNA from soils collected from across Canada, spanning multiple biomes. The libraries were constructed such that the cloned DNA can be easily transferred to Gateway® compliant vectors, facilitating functional screening in virtually any surrogate microbial host for which there are available plasmid vectors. The libraries, which we are placing in the public domain, will be distributed upon request without restriction to members of both the academic research community and industry. This article invites the scientific community to adopt this philosophy of open resource metagenomics to extend the utility of functional metagenomics beyond initial publication, circumventing the need to start from scratch with each new research project.  相似文献   
55.
56.
Ammonia-oxidizing archaea (AOA) outnumber ammonia-oxidizing bacteria (AOB) in many terrestrial and aquatic environments. Although nitrification is the primary function of aquarium biofilters, very few studies have investigated the microorganisms responsible for this process in aquaria. This study used quantitative real-time PCR (qPCR) to quantify the ammonia monooxygenase (amoA) and 16S rRNA genes of Bacteria and Thaumarchaeota in freshwater aquarium biofilters, in addition to assessing the diversity of AOA amoA genes by denaturing gradient gel electrophoresis (DGGE) and clone libraries. AOA were numerically dominant in 23 of 27 freshwater biofilters, and in 12 of these biofilters AOA contributed all detectable amoA genes. Eight saltwater aquaria and two commercial aquarium nitrifier supplements were included for comparison. Both thaumarchaeal and bacterial amoA genes were detected in all saltwater samples, with AOA genes outnumbering AOB genes in five of eight biofilters. Bacterial amoA genes were abundant in both supplements, but thaumarchaeal amoA and 16S rRNA genes could not be detected. For freshwater aquaria, the proportion of amoA genes from AOA relative to AOB was inversely correlated with ammonium concentration. DGGE of AOA amoA genes revealed variable diversity across samples, with nonmetric multidimensional scaling (NMDS) indicating separation of freshwater and saltwater fingerprints. Composite clone libraries of AOA amoA genes revealed distinct freshwater and saltwater clusters, as well as mixed clusters containing both freshwater and saltwater amoA gene sequences. These results reveal insight into commonplace residential biofilters and suggest that aquarium biofilters may represent valuable biofilm microcosms for future studies of AOA ecology.  相似文献   
57.
Laboratory experiments and numerical simulations have shown that the outcome of cyclic competition is significantly affected by the spatial distribution of the competitors. Short-range interaction and limited dispersion allows for coexistence of competing species that cannot coexist in a well-mixed environment. In order to elucidate the mechanisms that destroy species diversity we study the intermediate situation of imperfect mixing, typical in aquatic media, in a model of cyclic competition between toxin producing, sensitive and resistant phenotypes. It is found, that chaotic mixing, by changing the character of the spatial distribution, induces coherent oscillations in the populations. The magnitude of the oscillations increases with the strength of mixing, leading to the extinction of some species beyond a critical mixing rate. When mixing is non-uniform in space, coexistence can be sustained at much stronger mixing by the formation of partially isolated regions, that prevent global extinction. The heterogeneity of mixing may enable toxin producing and sensitive strains to coexist for very long time at strong mixing.  相似文献   
58.
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号