首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1850篇
  免费   89篇
  国内免费   4篇
  2023年   7篇
  2022年   20篇
  2021年   45篇
  2020年   17篇
  2019年   36篇
  2018年   45篇
  2017年   48篇
  2016年   49篇
  2015年   100篇
  2014年   99篇
  2013年   152篇
  2012年   166篇
  2011年   135篇
  2010年   97篇
  2009年   102篇
  2008年   133篇
  2007年   122篇
  2006年   99篇
  2005年   117篇
  2004年   84篇
  2003年   83篇
  2002年   76篇
  2001年   6篇
  2000年   5篇
  1999年   8篇
  1998年   13篇
  1997年   7篇
  1996年   11篇
  1995年   11篇
  1994年   1篇
  1992年   5篇
  1991年   1篇
  1990年   6篇
  1987年   3篇
  1986年   3篇
  1985年   2篇
  1984年   3篇
  1982年   3篇
  1981年   4篇
  1980年   3篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1974年   2篇
  1972年   4篇
  1970年   3篇
  1967年   1篇
排序方式: 共有1943条查询结果,搜索用时 31 毫秒
131.
Parental genomes are generally rearranged by two processes during meiosis: one is the segregation of homologous chromosomes and the other is crossing over between such chromosomes. Although the mechanisms underlying chromosome segregation and crossing over are well understood because of numerous genetic and molecular investigations, their contributions to the rearrangement of genetic information have not yet been analysed at a genome-wide level in Arabidopsis thaliana. We established 343 CAPS or SSLP markers to identify polymorphisms between two different Arabidopsis ecotypes, Col and Ler, which are distributed at an average distance of approximately 400kb between pairs of markers throughout the entire genome. Using these markers, crossover frequencies and chromosome segregation were quantified with respect to sex and age. Our large-scale analysis demonstrated that: (i) crossover frequencies during pollen formation were 1.79 and 1.37 times higher than those during megaspore formation in early and late flowers, respectively (P<0.001); (ii) the crossover frequencies during pollen formation were not significantly different between early and late flowers of main shoots (P>0.05), whereas the frequencies increased 1.30 times with shoot age during megaspore formation (P<0.001); (iii) the effect of aging depended on the developmental age of the individual shoot rather than on the age of the whole plant; and (iv) five chromosomes were randomly selected and mixed during meiosis.  相似文献   
132.
The human eye is insensitive to the angular direction of the light e-vector, but several animal species have the ability to discriminate differently polarized lights. How the polarization is detected is often unclear, however. Egg-laying Papilio butterflies have been shown to see false colours when presented with differently polarized lights. Here we asked whether this also holds in foraging butterflies. After training individuals to feed on nectar in front of an unpolarized spectral light, we carried out three dual-choice tests, where the discrimination of (i) the spectral content, (ii) the light intensity, and (iii) the e-vector orientation were investigated. In the first test, the butterflies selected the trained spectrum irrespective of its intensity, and in the second test they chose the light with the higher intensity. The result of the e-vector discrimination test was very similar to that of the second test, suggesting that foraging butterflies discriminate differently polarized lights as differing in brightness rather than as differing in colour. Papilio butterflies are clearly able to use at least two modes of polarization vision depending on the behavioural context.  相似文献   
133.
Attachment of a myristoyl group to NH(2)-terminus of a nascent protein among protein post-translational modification (PTM) is called myristoylation. The myristate moiety of proteins plays an important role for their biological functions, such as regulation of membrane binding (HIV-1 Gag) and enzyme activity (AMPK). Several predictors based on protein sequences alone are hitherto proposed. However, they produce a great number of false positive and false negative predictions; or they cannot be used for general purpose (i.e., taxon-specific); or threshold values of the decision rule of predictors need to be selected with cautiousness. Here, we present novel and taxon-free predictors based on protein primary structure. To identify myristoylated proteins accurately, we employ a widely used machinelearning algorithm, support vector machine (SVM). A series of SVM predictors are developed in the present study where various scales representing physicochemical and biological properties of amino acids (from the AAindex database) are used for numerical transformation of protein sequences. Of the predictors, the top ten achieve accuracies of >98% (the average value is 98.34%), and also the area under the ROC curve (AUC) values of >0.98. Compared with those of previous studies, the prediction accuracies are improved by about 3 to 4%.  相似文献   
134.
Magnaporthe oryzae is the causal agent of rice blast disease, a devastating problem worldwide. This fungus has caused breakdown of resistance conferred by newly developed commercial cultivars. To address how the rice blast fungus adapts itself to new resistance genes so quickly, we examined chromosomal locations of AVR-Pita, a subtelomeric gene family corresponding to the Pita resistance gene, in various isolates of M. oryzae (including wheat and millet pathogens) and its related species. We found that AVR-Pita (AVR-Pita1 and AVR-Pita2) is highly variable in its genome location, occurring in chromosomes 1, 3, 4, 5, 6, 7, and supernumerary chromosomes, particularly in rice-infecting isolates. When expressed in M. oryzae, most of the AVR-Pita homologs could elicit Pita-mediated resistance, even those from non-rice isolates. AVR-Pita was flanked by a retrotransposon, which presumably contributed to its multiple translocation across the genome. On the other hand, family member AVR-Pita3, which lacks avirulence activity, was stably located on chromosome 7 in a vast majority of isolates. These results suggest that the diversification in genome location of AVR-Pita in the rice isolates is a consequence of recognition by Pita in rice. We propose a model that the multiple translocation of AVR-Pita may be associated with its frequent loss and recovery mediated by its transfer among individuals in asexual populations. This model implies that the high mobility of AVR-Pita is a key mechanism accounting for the rapid adaptation toward Pita. Dynamic adaptation of some fungal plant pathogens may be achieved by deletion and recovery of avirulence genes using a population as a unit of adaptation.  相似文献   
135.
The obligate intracellular pathogen Chlamydia trachomatis replicates within a membrane-bound inclusion that acquires host sphingomyelin (SM), a process that is essential for replication as well as inclusion biogenesis. Previous studies demonstrate that SM is acquired by a Brefeldin A (BFA)-sensitive vesicular trafficking pathway, although paradoxically, this pathway is dispensable for bacterial replication. This finding suggests that other lipid transport mechanisms are involved in the acquisition of host SM. In this work, we interrogated the role of specific components of BFA-sensitive and BFA-insensitive lipid trafficking pathways to define their contribution in SM acquisition during infection. We found that C. trachomatis hijacks components of both vesicular and non-vesicular lipid trafficking pathways for SM acquisition but that the SM obtained from these separate pathways is being utilized by the pathogen in different ways. We show that C. trachomatis selectively co-opts only one of the three known BFA targets, GBF1, a regulator of Arf1-dependent vesicular trafficking within the early secretory pathway for vesicle-mediated SM acquisition. The Arf1/GBF1-dependent pathway of SM acquisition is essential for inclusion membrane growth and stability but is not required for bacterial replication. In contrast, we show that C. trachomatis co-opts CERT, a lipid transfer protein that is a key component in non-vesicular ER to trans-Golgi trafficking of ceramide (the precursor for SM), for C. trachomatis replication. We demonstrate that C. trachomatis recruits CERT, its ER binding partner, VAP-A, and SM synthases, SMS1 and SMS2, to the inclusion and propose that these proteins establish an on-site SM biosynthetic factory at or near the inclusion. We hypothesize that SM acquired by CERT-dependent transport of ceramide and subsequent conversion to SM is necessary for C. trachomatis replication whereas SM acquired by the GBF1-dependent pathway is essential for inclusion growth and stability. Our results reveal a novel mechanism by which an intracellular pathogen redirects SM biosynthesis to its replicative niche.  相似文献   
136.
We examined seasonal changes in population densities of stream salmonids (masu salmon Oncorhynchus masou, white-spotted charr Salvelinus leucomaenis, and rainbow trout O. mykiss) in two tributaries of the Shoro River, eastern Hokkaido, Japan. In one small tributary, water temperature was relatively high during the winter, and populations of salmon and trout increased through immigration at this time of the year, becoming dominant components of the salmonid assemblage; the density of charr in this stream decreased during the winter, but charr was dominant during the summer. In another medium-sized tributary, the water temperature fell to close to 0°C during the winter, and densities of salmon and charr decreased in this season, through emigration; trout were very rare in this stream. Seasonal patterns of stream salmonid densities vary among species and between localities, resulting in seasonal changes in species composition. For a comprehensive understanding of population processes, a whole-river survey across seasons will be necessary.  相似文献   
137.
138.
Previously, we clarified the surface antigen profiles of hepatic progenitor cells (HPCs) in fetal liver tissue as the CD49f(+)CD45(-)Thy1(-) cell fraction. However, these cells were a heterogeneous cell population containing various stages of differentiation. This study aimed to detect more immature HPCs, using a novel surface antigen, gp38. After the collagenase digestion of fetal livers harvested from E13.5 to E18.5 fetal mice, HPCs were obtained and divided into two subpopulations using flow cytometry: gp38-positive HPCs, and gp38-negative HPCs. Both types of HPCs were characterized by immunocytochemistry and RT-PCR. The proliferative activity was compared by BrdU incorporation and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTS) assay. Furthermore, the comprehensive gene expression was investigated by DNA microarray. Both types of HPCs expressed alpha-fetoprotein. However, the gp38-positive HPCs derived from E13.5 fetal livers did not express albumin or cytokeratin 19, while the gp38-negative HPCs did. DNA microarray revealed that some genes related to the Wnt signal pathway were up-regulated in the gp38-positive HPCs. Furthermore, Wnt3a had a proliferative effect on the gp38-positive HPCs. In conclusion, the gp38-positive HPCs derived from fetal liver tissue until E13.5 could therefore be candidates for hepatic stem cells in the fetal liver.  相似文献   
139.
Glycosylphosphatidylinositol (GPI)-anchored proteins are secretory proteins that are attached to the cell surface of eukaryotic cells by a glycolipid moiety. Once GPI anchoring has occurred in the lumen of the endoplasmic reticulum (ER), the structure of the lipid part on the GPI anchor undergoes a remodeling process prior to ER exit. In this study, we provide evidence suggesting that the yeast p24 complex, through binding specifically to GPI-anchored proteins in an anchor-dependent manner, plays a dual role in their selective trafficking. First, the p24 complex promotes efficient ER exit of remodeled GPI-anchored proteins after concentration by connecting them with the COPII coat and thus facilitates their incorporation into vesicles. Second, it retrieves escaped, unremodeled GPI-anchored proteins from the Golgi to the ER in COPI vesicles. Therefore the p24 complex, by sensing the status of the GPI anchor, regulates GPI-anchored protein intracellular transport and coordinates this with correct anchor remodeling.  相似文献   
140.
Atypical forms of bovine spongiform encephalopathy (BSE) may be caused by different prions from classical BSE (C-BSE). In this study, we examined the susceptibility of mice overexpressing mouse and hamster chimeric prion protein (PrP) to L-type atypical BSE (L-BSE). None of the transgenic mice showed susceptibility to L-BSE, except mice overexpressing hamster PrP. We also examined the transmission properties of L-BSE in hamsters. The incubation period of hamsters intracerebrally inoculated with L-BSE was 576.8 days, and that of the subsequent passage was decreased to 208 days. Although the lesion and glycoform profiles and relative proteinase K resistant core fragment of the abnormal isoform of PrP (PrPcore) of L-BSE were similar to that of C-BSE, the deposition of the abnormal isoform of PrP (PrPSc) and the molecular weight of PrPcore of L-BSE was different from than that of C-BSE. In hamster models, some prion strain characteristics of L-BSE were indistinguishable from those of C-BSE.Key words: prion, atypical, L-BSE, PrPcore, hamster, transmission  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号