全文获取类型
收费全文 | 2045篇 |
免费 | 105篇 |
国内免费 | 4篇 |
专业分类
2154篇 |
出版年
2023年 | 8篇 |
2022年 | 24篇 |
2021年 | 46篇 |
2020年 | 17篇 |
2019年 | 36篇 |
2018年 | 45篇 |
2017年 | 49篇 |
2016年 | 50篇 |
2015年 | 103篇 |
2014年 | 100篇 |
2013年 | 158篇 |
2012年 | 174篇 |
2011年 | 144篇 |
2010年 | 105篇 |
2009年 | 110篇 |
2008年 | 140篇 |
2007年 | 130篇 |
2006年 | 107篇 |
2005年 | 122篇 |
2004年 | 93篇 |
2003年 | 89篇 |
2002年 | 84篇 |
2001年 | 21篇 |
2000年 | 11篇 |
1999年 | 28篇 |
1998年 | 21篇 |
1997年 | 10篇 |
1996年 | 14篇 |
1995年 | 11篇 |
1992年 | 8篇 |
1991年 | 2篇 |
1990年 | 9篇 |
1989年 | 5篇 |
1988年 | 6篇 |
1987年 | 3篇 |
1986年 | 6篇 |
1984年 | 5篇 |
1983年 | 3篇 |
1982年 | 5篇 |
1981年 | 4篇 |
1980年 | 5篇 |
1979年 | 4篇 |
1978年 | 3篇 |
1976年 | 2篇 |
1975年 | 5篇 |
1974年 | 4篇 |
1973年 | 5篇 |
1972年 | 5篇 |
1970年 | 4篇 |
1969年 | 2篇 |
排序方式: 共有2154条查询结果,搜索用时 0 毫秒
991.
Koro Gotoh Megumi Inoue Kentaro Shiraishi Takayuki Masaki Seiichi Chiba Kimihiko Mitsutomi Takanobu Shimasaki Hisae Ando Kansuke Fujiwara Isao Katsuragi Tetsuya Kakuma Masataka Seike Toshiie Sakata Hironobu Yoshimatsu 《PloS one》2012,7(12)
Obesity is associated with systemic low-grade inflammation and is a risk factor for non-alcoholic fatty pancreas disease (NAFPD), but the molecular mechanisms of these associations are not clear. Interleukin (IL)-10, a potent anti-inflammatory cytokine, is released during acute pancreatitis and is known to limit inflammatory responses by downregulating the release of proinflammatory mediators. The origin of IL-10 that suppresses pancreatitis has not been investigated. Since obesity is known to reduce expression of proinflammatory cytokines in the spleen, we examined whether spleen-derived IL-10 regulates NAFPD caused by high-fat (HF) diet-induced obesity. The following investigations were performed: 1) IL-10 induction from spleen was examined in male mice fed a HF diet; 2) triglyceride content, expression of pro- and anti-inflammatory cytokines and infiltration of M1 and M2 macrophages were determined to evaluate ectopic fat accumulation and inflammatory responses in the pancreas of splenectomy (SPX)-treated mice fed HF diet; 3) exogenous IL-10 was systemically administered to SPX-treated obese mice and the resulting pathogenesis caused by SPX was assessed; and 4) IL-10 knockout (IL-10KO) mice were treated with SPX and ectopic fat deposition and inflammatory conditions in the pancreas were investigated. Obesity impaired the ability of the spleen to synthesize cytokines, including IL-10. SPX aggravated fat accumulation and inflammatory responses in the pancreas of HF diet-induced obese mice and these effects were inhibited by systemic administration of IL-10. Moreover, SPX had little effect on fat deposition and inflammatory responses in the pancreas of IL-10KO mice. Our findings indicate that obesity reduces IL-10 production by the spleen and that spleen-derived IL-10 may protect against the development of NAFPD. 相似文献
992.
Rikimaru K Wakabayashi T Abe H Imoto H Maekawa T Ujikawa O Murase K Matsuo T Matsumoto M Nomura C Tsuge H Arimura N Kawakami K Sakamoto J Funami M Mol CD Snell GP Bragstad KA Sang BC Dougan DR Tanaka T Katayama N Horiguchi Y Momose Y 《Bioorganic & medicinal chemistry》2012,20(2):714-733
Herein, we describe the design, synthesis, and structure-activity relationships of novel benzylpyrazole acylsulfonamides as non-thiazolidinedione (TZD), non-carboxylic-acid-based peroxisome proliferator-activated receptor (PPAR) γ agonists. Docking model analysis of in-house weak agonist 2 bound to the reported PPARγ ligand binding domain suggested that modification of the carboxylic acid of 2 would help strengthen the interaction of 2 with the TZD pocket and afford non-carboxylic-acid-based agonists. In this study, we used an acylsulfonamide group as the ring-opening analog of TZD as an isosteric replacement of carboxylic acid moiety of 2; further, preliminary modification of the terminal alkyl chain on the sulfonyl group gave the lead compound 3c. Subsequent optimization of the resulting compound gave the potent agonists 25c, 30b, and 30c with high metabolic stability and significant antidiabetic activity. Further, we have described the difference in binding mode of the carboxylic-acid-based agonist 1 and acylsulfonamide 3d. 相似文献
993.
Hara H Okemoto-Nakamura Y Shinkai-Ouchi F Hanada K Yamakawa Y Hagiwara K 《Journal of virology》2012,86(10):5626-5636
Prion diseases are characterized by the replicative propagation of disease-associated forms of prion protein (PrP(Sc); PrP refers to prion protein). The propagation is believed to proceed via two steps; the initial binding of the normal form of PrP (PrP(C)) to PrP(Sc) and the subsequent conversion of PrP(C) to PrP(Sc). We have explored the two-step model in prion-infected mouse neuroblastoma (ScN2a) cells by focusing on the mouse PrP (MoPrP) segment 92-GGTHNQWNKPSKPKTN-107, which is within a region previously suggested to be part of the binding interface or shown to differ in its accessibility to anti-PrP antibodies between PrP(C) and PrP(Sc). Exchanging the MoPrP segment with the corresponding chicken PrP segment (106-GGSYHNQKPWKPPKTN-121) revealed the necessity of MoPrP residues 99 to 104 for the chimeras to achieve the PrP(Sc) state, while segment 95 to 98 was replaceable with the chicken sequence. An alanine substitution at position 100, 102, 103, or 104 of MoPrP gave rise to nonconvertible mutants that associated with MoPrP(Sc) and interfered with the conversion of endogenous MoPrP(C). The interference was not evoked by a chimera (designated MCM2) in which MoPrP segment 95 to 104 was changed to the chicken sequence, though MCM2 associated with MoPrP(Sc). Incubation of the cells with a synthetic peptide composed of MoPrP residues 93 to 107 or alanine-substituted cognates did not inhibit the conversion, whereas an anti-P8 antibody recognizing the above sequence in PrP(C) reduced the accumulation of PrP(Sc) after 10 days of incubation of the cells. These results suggest the segment 100 to 104 of MoPrP(C) plays a key role in conversion after binding to MoPrP(Sc). 相似文献
994.
K Nishida T Nakatani A Ohishi H Okuda Y Higashi T Matsuo S Fujimoto K Nagasawa 《Journal of neurochemistry》2012,122(6):1118-1128
J. Neurochem. (2012) 122, 1118-1128. ABSTRACT: P2X7 receptor (P2X7R) is known to be a 'death receptor' in immune cells, but its functional expression in non-immune cells such as neurons is controversial. Here, we examined the involvement of P2X7R activation and mitochondrial dysfunction in ATP-induced neuronal death in cultured cortical neurons. In P2X7R- and pannexin-1-expressing neuron cultures, 5 or more mM ATP or 0.1 or more mM BzATP induced neuronal death including apoptosis, and cell death was prevented by oxATP, P2X7R-selective antagonists. ATP-treated neurons exhibited Ca(2+) entry and YO-PRO-1 uptake, the former being inhibited by oxATP and A438079, and the latter by oxATP and carbenoxolone, while P2X7R antagonism with oxATP, but not pannexin-1 blocking with carbenoxolone, prevented the ATP-induced neuronal death. The ATP treatment induced reactive oxygen species generation through activation of NADPH oxidase and activated poly(ADP-ribose) polymerase, but both of them made no or negligible contribution to the neuronal death. Rhodamine123 efflux from neuronal mitochondria was increased by the ATP-treatment and was inhibited by oxATP, and a mitochondrial permeability transition pore inhibitor, cyclosporine A, significantly decreased the ATP-induced neuronal death. In ATP-treated neurons, the cleavage of pro-caspase-3 was increased, and caspase inhibitors, Q-VD-OPh and Z-DEVD-FMK, inhibited the neuronal death. The cleavage of apoptosis-inducing factor was increased, and calpain inhibitors, MDL28170 and PD151746, inhibited the neuronal death. These findings suggested that P2X7R was functionally expressed by cortical neuron cultures, and its activation-triggered Ca(2+) entry and mitochondrial dysfunction played important roles in the ATP-induced neuronal death. 相似文献
995.
Masayo Kagami Kentaro Matsuoka Toshiro Nagai Michiko Yamanaka Kenji Kurosawa Nobuhiro Suzumori Yoichi Sekita Mami Miyado Keiko Matsubara Tomoko Fuke Fumiko Kato Maki Fukami Tsutomu Ogata 《Epigenetics》2012,7(10):1142-1150
Although recent studies in patients with paternal uniparental disomy 14 [upd(14)pat] and other conditions affecting the chromosome 14q32.2 imprinted region have successfully identified underlying epigenetic factors involved in the development of upd(14)pat phenotype, several matters, including regulatory mechanism(s) for RTL1 expression, imprinting status of DIO3 and placental histological characteristics, remain to be elucidated. We therefore performed molecular studies using fresh placental samples from two patients with upd(14)pat. We observed that RTL1 expression level was about five times higher in the placental samples of the two patients than in control placental samples, whereas DIO3 expression level was similar between the placental samples of the two patients and the control placental samples. We next performed histological studies using the above fresh placental samples and formalin-fixed and paraffin-embedded placental samples obtained from a patient with a maternally derived microdeletion involving DLK1, the-IG-DMR, the MEG3-DMR and MEG3. Terminal villi were associated with swollen vascular endothelial cells and hypertrophic pericytes, together with narrowed capillary lumens. DLK1, RTL1 and DIO3 proteins were specifically identified in vascular endothelial cells and pericytes, and the degree of protein staining was well correlated with the expression dosage of corresponding genes. These results suggest that RTL1as-encoded microRNA functions as a repressor of RTL1 expression, and argue against DIO3 being a paternally expressed gene. Furthermore, it is inferred that DLK1, DIO3 and, specially, RTL1 proteins, play a pivotal role in the development of vascular endothelial cells and pericytes. 相似文献
996.
997.
Serine hydroxymethyltransferase catalyzes the cleavage of β-hydroxyamino acids into glycine and aldehydes in the absence of tetrahydrofolate. The enzyme accepts various β-hydroxyamino acids as the substrate of this reaction. The reaction rate varies depending on the substituent and stereochemistry at the Cβ atom: the erythro forms and the β-phenyl substituent are preferred over the threo forms and the β-methyl substituent, respectively. Although several mechanisms have been proposed, what determines the substrate preference remains unclear. We first performed quantum mechanical calculations to assess the validity of the reaction mechanisms. The results indicate that the retro-aldol mechanism starting with abstraction of the proton from the β-hydroxyl group is plausible. This also suggests that Cα-Cβ bond cleavage is the rate-limiting step. We next measured the dependence of the rate constants on temperature with four representative substrates and calculated the activation energies and pre-exponential factors from the Arrhenius plots. The activation energies of the erythro forms were lower than those of the threo forms. The β-phenyl substituent lowered the activation energy in the threo form, whereas it did not alter the activation energy but increased the pre-exponential factor in the erythro form. We present a unified model to explain the origin of the substituent and stereochemical preferences by combining the theoretical and experimental results. A possible biological role of the tetrahydrofolate-independent activity in thermophiles is also discussed. 相似文献
998.
Tomotada Iwamoto Louis Grandjean Kentaro Arikawa Noriko Nakanishi Luz Caviedes Jorge Coronel Patricia Sheen Takayuki Wada Carmen A. Taype Marie-Anne Shaw David A. J. Moore Robert H. Gilman 《PloS one》2012,7(11)
Beijing family strains of Mycobacterium tuberculosis have attracted worldwide attention because of their wide geographical distribution and global emergence. Peru, which has a historical relationship with East Asia, is considered to be a hotspot for Beijing family strains in South America. We aimed to unveil the genetic diversity and transmission characteristics of the Beijing strains in Peru. A total of 200 Beijing family strains were identified from 2140 M. tuberculosis isolates obtained in Lima, Peru, between December 2008 and January 2010. Of them, 198 strains were classified into sublineages, on the basis of 10 sets of single nucleotide polymorphisms (SNPs). They were also subjected to variable number tandem-repeat (VNTR) typing using an international standard set of 15 loci (15-MIRU-VNTR) plus 9 additional loci optimized for Beijing strains. An additional 70 Beijing family strains, isolated between 1999 and 2006 in Lima, were also analyzed in order to make a longitudinal comparison. The Beijing family was the third largest spoligotyping clade in Peru. Its population structure, by SNP typing, was characterized by a high frequency of Sequence Type 10 (ST10), which belongs to a modern subfamily of Beijing strains (178/198, 89.9%). Twelve strains belonged to the ancient subfamily (ST3 [n = 3], ST25 [n = 1], ST19 [n = 8]). Overall, the polymorphic information content for each of the 24 loci values was low. The 24 loci VNTR showed a high clustering rate (80.3%) and a high recent transmission index (RTIn−1 = 0.707). These strongly suggest the active and on-going transmission of Beijing family strains in the survey area. Notably, 1 VNTR genotype was found to account for 43.9% of the strains. Comparisons with data from East Asia suggested the genotype emerged as a uniquely endemic clone in Peru. A longitudinal comparison revealed the genotype was present in Lima by 1999. 相似文献
999.
A norovirus protease structure provides insights into active and substrate binding site integrity 下载免费PDF全文
Nakamura K Someya Y Kumasaka T Ueno G Yamamoto M Sato T Takeda N Miyamura T Tanaka N 《Journal of virology》2005,79(21):13685-13693
Norovirus 3C-like proteases are crucial to proteolytic processing of norovirus polyproteins. We determined the crystal structure of the 3C-like protease from Chiba virus, a norovirus, at 2.8-A resolution. An active site including Cys139 and His30 is present, as is a hydrogen bond network that stabilizes the active site conformation. In the oxyanion hole backbone, a structural difference was observed probably upon substrate binding. A peptide substrate/enzyme model shows that several interactions between the two components are critical for substrate binding and that the S1 and S2 sites appropriately accommodate the substrate P1 and P2 residues, respectively. Knowledge of the structure and a previous mutagenesis study allow us to correlate proteolysis and structure. 相似文献