首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5570篇
  免费   336篇
  国内免费   7篇
  5913篇
  2022年   31篇
  2021年   63篇
  2020年   32篇
  2019年   59篇
  2018年   80篇
  2017年   76篇
  2016年   104篇
  2015年   173篇
  2014年   186篇
  2013年   295篇
  2012年   352篇
  2011年   308篇
  2010年   218篇
  2009年   185篇
  2008年   299篇
  2007年   279篇
  2006年   260篇
  2005年   273篇
  2004年   233篇
  2003年   233篇
  2002年   238篇
  2001年   145篇
  2000年   182篇
  1999年   147篇
  1998年   52篇
  1997年   43篇
  1996年   46篇
  1995年   35篇
  1994年   34篇
  1993年   31篇
  1992年   124篇
  1991年   88篇
  1990年   96篇
  1989年   85篇
  1988年   84篇
  1987年   70篇
  1986年   76篇
  1985年   59篇
  1984年   69篇
  1983年   48篇
  1982年   42篇
  1981年   34篇
  1980年   23篇
  1979年   32篇
  1978年   24篇
  1975年   23篇
  1974年   24篇
  1972年   25篇
  1970年   26篇
  1967年   25篇
排序方式: 共有5913条查询结果,搜索用时 0 毫秒
81.
82.
Phosphoinositides function as fundamental signaling molecules and play roles in diverse cellular processes. Certain types of viruses may employ host cell phosphoinositide signaling systems to facilitate their replication cycles. Here we demonstrate that the β isoform of class II PI3K (PI3K-C2β) plays an indispensable role in hepatitis C virus (HCV) propagation in human hepatocellular carcinoma cells. Knockdown of PI3K-C2β abrogated HCV propagation in the cell. Using an HCV replicon system, we found that knockdown of PI3K-C2β substantially repressed the full-genome replication, while showing relatively small reductions in sub-genome replication, in which structural proteins including core protein were deleted. We also found that HCV core protein showed the binding activity towards D4-phosphorylated phosphoinositides and overlapped localization with phosphatidylinositol 3,4-bisphosphate in the cell. These results suggest that the phosphoinositide generated by PI3K-C2β plays an indispensable role in the HCV replication cycle through the binding to HCV core protein.  相似文献   
83.
84.
85.
Autophagy-related degradation selective for mitochondria (mitophagy) is an evolutionarily conserved process that is thought to be critical for mitochondrial quality and quantity control. In budding yeast, autophagy-related protein 32 (Atg32) is inserted into the outer membrane of mitochondria with its N- and C-terminal domains exposed to the cytosol and mitochondrial intermembrane space, respectively, and plays an essential role in mitophagy. Atg32 interacts with Atg8, a ubiquitin-like protein localized to the autophagosome, and Atg11, a scaffold protein required for selective autophagy-related pathways, although the significance of these interactions remains elusive. In addition, whether Atg32 is the sole protein necessary and sufficient for initiation of autophagosome formation has not been addressed. Here we show that the Atg32 IMS domain is dispensable for mitophagy. Notably, when anchored to peroxisomes, the Atg32 cytosol domain promoted autophagy-dependent peroxisome degradation, suggesting that Atg32 contains a module compatible for other organelle autophagy. X-ray crystallography reveals that the Atg32 Atg8 family-interacting motif peptide binds Atg8 in a conserved manner. Mutations in this binding interface impair association of Atg32 with the free form of Atg8 and mitophagy. Moreover, Atg32 variants, which do not stably interact with Atg11, are strongly defective in mitochondrial degradation. Finally, we demonstrate that Atg32 forms a complex with Atg8 and Atg11 prior to and independent of isolation membrane generation and subsequent autophagosome formation. Taken together, our data implicate Atg32 as a bipartite platform recruiting Atg8 and Atg11 to the mitochondrial surface and forming an initiator complex crucial for mitophagy.  相似文献   
86.
A unique feature in inflammatory tissue of rheumatoid arthritis (RA) is the formation of ectopic lymphoid aggregates with germinal center (GC)-like structures that can be considered to contribute to the pathogenesis of RA, because local production of the autoantibody, rheumatoid factor, is thought to be a causative factor in tissue damage. However, the factors governing the formation of GC in RA are presently unknown. To begin to address this, the expression of B cell attracting chemokine (BCA-1) (CXCL13), a potent chemoattractant of B cells, was examined in the synovium of patients with RA or with osteoarthritis (OA). Expression of BCA-1 mRNA was detected in all RA samples, but in only one of five OA samples. Lymphoid follicles were observed in four of seven RA samples and in two of eight OA samples, and in most of them BCA-1 protein was detected in GC. BCA-1 was not detected in tissues lacking lymphoid follicles. Notably, BCA-1 was detected predominantly in follicular dendritic cells in GC. CD20-positive B cells were aggregated in regions of BCA-1 expression, but not T cells or macrophages. These data suggest that BCA-1 produced by follicular dendritic cells may attract B cells and contribute to the formation of GC-like structures in chronic arthritis.  相似文献   
87.
Laminins, a multifunctional protein family of extracellular matrix, interact with various types of integrin. Here, integrin-mediated cell adhesive peptides have been systematically screened in the laminin α4 and α5 chain G domain peptide library consisting of 211 peptides by both the peptide-coated plastic plates and peptide-conjugated Sepharose bead assays using human dermal fibroblasts. Thirteen peptides promoted cell spreading and the activity was specifically inhibited by EDTA. Cell attachment to 11 peptides was inhibited by anti-integrin β1 antibody. Additionally, cell attachment to the A5G81 (AGQWHRVSVRWG) and A5G84 (TWSQKALHHRVP) peptides was specifically inhibited by anti-integrin α3 and α6 antibodies. These results suggest that the A5G81 and A5G84 peptides promote integrin α3β1- and α6β1-mediated cell attachment. Further, most of the integrin-mediated cell adhesive peptides are located in the loop regions in the G domains, suggesting that structure is important for the integrin specific recognition. Integrin binding peptides are useful for understanding laminin functions and have a potential to use for biomaterials and drug development.  相似文献   
88.
Type II transmembrane serine proteases (TTSPs) are structurally defined by the presence of a transmembrane domain located near the N-terminus and a C-terminal extracellular serine protease domain. The human TTSP family consists of 17 members. Some members of the family have pivotal functions in development and homeostasis, and are involved in tumorigenesis and viral infections. The activities of TTSPs are regulated by endogenous protease inhibitors. However, protease inhibitors of most TTSPs have not yet been identified. In this study, we investigated the inhibitory effect of hepatocyte growth factor activator inhibitor type 1 (HAI-1), a Kunitz-type serine protease inhibitor, on several members of the TTSP family. We found that the protease activity of a member, TMPRSS13, was inhibited by HAI-1. A detailed analysis revealed that a soluble form of HAI-1 with one Kunitz domain (NK1) more strongly inhibited TMPRSS13 than another soluble form of HAI-1 with two Kunitz domains (NK1LK2). In addition, an in vitro protein binding assay showed that NK1 formed complexes with TMPRSS13, but NK1LK2 did not. TMPRSS13 converted single-chain pro-hepatocyte growth factor (pro-HGF) to a two-chain form in vitro, and the pro-HGF converting activity of TMPRSS13 was inhibited by NK1. The two-chain form of HGF exhibited biological activity, assessed by phosphorylation of the HGF receptor (c-Met) and extracellular signal-regulated kinase, and scattered morphology in human hepatocellular carcinoma cell line HepG2. These results suggest that TMPRSS13 functions as an HGF-converting protease, the activity of which may be regulated by HAI-1.  相似文献   
89.
The major hydrophobic fluorophore of the retinal pigment epithelium (RPE) is A2E, a pyridinium bis-retinoid derived from all-trans-retinal and phosphatidyl-ethanolamine. The accumulation of fluorophores such as A2E is implicated in the pathogenesis of age-related macular degeneration (AMD), a disease associated with the deterioration of central vision and a leading cause of blindness in the elderly. Recent chemical and biological studies have provided insight into the synthesis and biosynthesis of A2E, the spectroscopic properties of this pigment, and the role of A2E and RPE cell death.  相似文献   
90.
We studied the functional role of Fas (CD95) in thymic T cell development using the TCR transgenic mice homozygous for the lpr mutation, DO10 lpr/lpr mice. In DO10 lpr/lpr mice, the differentiation of CD4(+)CD8(+) double-positive (DP) thymocytes to CD4(+) single-positive (SP) thymocytes was markedly impaired, as indicated by decreased generation of CD4(+) SP thymocytes and reduced ratio of CD4(+) SP thymocytes to DP thymocytes in lpr/lpr mice compared with those of +/+ mice. Activation of DP thymocytes in the process of positive selection was also significantly inhibited in DO10 lpr/lpr mice, as shown by the lower levels of CD69 expression on DP thymocytes in lpr/lpr mice compared to +/+ mice. Furthermore, the deletion of DP thymocytes induced by in vivo administration of OVA peptide (up to 150 micrograms) and anti-TCR clonotype mAb did not occur in DO10 lpr/lpr mice, whereas these treatments significantly decreased DP thymocytes in DO10 +/+ mice. On the other hand, no significant difference in DO10 transgenic TCR expression on DP thymocytes was found between DO10 lpr/lpr and +/+ mice. Together, these results indicate that Fas is importantly involved in both positive and negative selection of thymocytes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号