全文获取类型
收费全文 | 2575篇 |
免费 | 162篇 |
国内免费 | 1篇 |
专业分类
2738篇 |
出版年
2022年 | 28篇 |
2021年 | 45篇 |
2020年 | 21篇 |
2019年 | 27篇 |
2018年 | 32篇 |
2017年 | 23篇 |
2016年 | 58篇 |
2015年 | 81篇 |
2014年 | 110篇 |
2013年 | 180篇 |
2012年 | 128篇 |
2011年 | 141篇 |
2010年 | 105篇 |
2009年 | 74篇 |
2008年 | 95篇 |
2007年 | 107篇 |
2006年 | 106篇 |
2005年 | 96篇 |
2004年 | 97篇 |
2003年 | 113篇 |
2002年 | 88篇 |
2001年 | 82篇 |
2000年 | 71篇 |
1999年 | 62篇 |
1998年 | 24篇 |
1997年 | 32篇 |
1996年 | 22篇 |
1993年 | 20篇 |
1992年 | 48篇 |
1991年 | 46篇 |
1990年 | 38篇 |
1989年 | 42篇 |
1988年 | 36篇 |
1987年 | 41篇 |
1986年 | 29篇 |
1985年 | 45篇 |
1984年 | 34篇 |
1983年 | 19篇 |
1982年 | 22篇 |
1981年 | 20篇 |
1980年 | 15篇 |
1979年 | 22篇 |
1978年 | 25篇 |
1977年 | 13篇 |
1975年 | 13篇 |
1974年 | 16篇 |
1973年 | 15篇 |
1970年 | 17篇 |
1969年 | 15篇 |
1966年 | 14篇 |
排序方式: 共有2738条查询结果,搜索用时 15 毫秒
101.
Yuusuke Maruyama Toshihiko Ogura Kazuhiro Mio Kenta Kato Takeshi Kaneko Shigeki Kiyonaka Yasuo Mori Chikara Sato 《The Journal of biological chemistry》2009,284(20):13676-13685
The Ca2+ release-activated Ca2+ channel is a
principal regulator of intracellular Ca2+ rise, which conducts
various biological functions, including immune responses. This channel,
involved in store-operated Ca2+ influx, is believed to be composed
of at least two major components. Orai1 has a putative channel pore and
locates in the plasma membrane, and STIM1 is a sensor for luminal
Ca2+ store depletion in the endoplasmic reticulum membrane. Here we
have purified the FLAG-fused Orai1 protein, determined its tetrameric
stoichiometry, and reconstructed its three-dimensional structure at 21-Å
resolution from 3681 automatically selected particle images, taken with an
electron microscope. This first structural depiction of a member of the Orai
family shows an elongated teardrop-shape 150Å in height and 95Å in
width. Antibody decoration and volume estimation from the amino acid sequence
indicate that the widest transmembrane domain is located between the round
extracellular domain and the tapered cytoplasmic domain. The cytoplasmic
length of 100Å is sufficient for direct association with STIM1. Orifices
close to the extracellular and intracellular membrane surfaces of Orai1 seem
to connect outside the molecule to large internal cavities.Ca2+ is an intracellular second messenger that plays important
roles in various physiological functions such as immune response, muscle
contraction, neurotransmitter release, and cell proliferation. Intracellular
Ca2+ is mainly stored in the endoplasmic reticulum
(ER).2 This ER system
is distributed through the cytoplasm from around the nucleus to the cell
periphery close to the plasma membrane. In non-excitable cells, the ER
releases Ca2+ through the inositol 1,4,5-trisphosphate
(IP3) receptor channel in response to various signals, and the
Ca2+ store is depleted. Depletion of Ca2+ then induces
Ca2+ influx from outside the cell to help in refilling the
Ca2+ stores and to continue Ca2+ rise for several
minutes in the cytoplasm (1,
2). This Ca2+ influx
was first proposed by Putney
(3) and was named
store-operated Ca2+ influx. In the immune system, store-operated
Ca2+ influx is mainly mediated by the Ca2+
release-activated Ca2+ (CRAC) current, which is a highly
Ca2+-selective inwardly rectified current with low conductance
(4,
5). Pathologically, the loss of
CRAC current in T cells causes severe combined immunodeficiency
(6) where many Ca2+
signal-dependent gene expressions, including cytokines, are interrupted
(7). Therefore, CRAC current is
necessary for T cell functions.Recently, Orai1 (also called CRACM1) and STIM1 have been physiologically
characterized as essential components of the CRAC channel
(8–12).
They are separately located in the plasma membrane and in the ER membrane;
co-expression of these proteins presents heterologous CRAC-like currents in
various types of cells (10,
13–15).
Both of them are shown to be expressed ubiquitously in various tissues
(16–18).
STIM1 senses Ca2+ depletion in the ER through its EF hand motif
(19) and transmits a signal to
Orai1 in the plasma membrane. Although Orai1 is proposed as a regulatory
component for some transient receptor potential canonical channels
(20,
21), it is believed from the
mutation analyses to be the pore-forming subunit of the CRAC channel
(8,
22–24).
In the steady state, both Orai1 and STIM1 molecules are dispersed in each
membrane. When store depletion occurs, STIM1 proteins gather into clusters to
form puncta in the ER membrane near the plasma membrane
(11,
19). These clusters then
trigger the clustering of Orai1 in the plasma membrane sites opposite the
puncta (25,
26), and CRAC channels are
activated (27).Orai1 has two homologous genes, Orai2 and Orai3
(8). They form the Orai family
and have in common the four transmembrane (TM) segments with relatively large
N and C termini. These termini are demonstrated to be in the cytoplasm,
because both N- and C-terminally introduced tags are immunologically detected
only in the membrane-permeabilized cells
(8,
9). The subunit stoichiometry
of Orai1 is as yet controversial: it is believed to be an oligomer, presumably
a dimer or tetramer even in the steady state
(16,
28–30).Despite the accumulation of biochemical and electrophysiological data,
structural information about Orai1 is limited due to difficulties in
purification and crystallization. In this study, we have purified Orai1 in its
tetrameric form and have reconstructed the three-dimensional structure from
negatively stained electron microscopic (EM) images. 相似文献
102.
Mizuki Kobayashi Kenta Watanabe Takehiro Suzuki Naoshi Dohmae Masachika Fujiyoshi Masashi Uchida Takaaki Suzuki Kazuei Igarashi Itsuko Ishii 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2021,1866(1):158809
We have reported that acrolein-conjugated low-density lipoprotein (Acro-LDL) uptake by scavenger receptor class A type 1 (SR-A1) can mediate macrophage foam cell formation. The purpose of this study was to determine which amino acid residues of apoB protein in LDL are conjugated with acrolein. Acro-apoB was prepared by incubation of LDL with acrolein (10 to 60 μM) at 37 °C for 7 days. Identification of acrolein-conjugated amino acid residues in apoB was performed using LC-MS/MS. The levels of acrolein-conjugated amino acid residues of apoB as well as crosslinking apoB increased in proportion to acrolein concentration. The level of LDL uptake by macrophages was parallel with the acrolein-conjugated monomer apoB. Acrolein-conjugated amino acid residues in apoB were C212, K327, K742, K949, K1087, H1923, K2634, K3237 and K3846. The NH2-teriminal four amino acid residues (C212, K327, K742 and K949) were located at the scavenger receptor SR-A1 recognition site, suggesting that these four acrolein-conjugated amino acids are involved in the rapid uptake of Acro-LDL by macrophages. It is proposed that the rapid uptake of LDL by macrophages is dependent on acrolein conjugation of four amino acids residues at the scavenger receptor recognition site of apoB in LDL. 相似文献
103.
Takasaki M Honma T Yanaka M Sato K Shinohara N Ito J Tanaka Y Tsuduki T Ikeda I 《The Journal of nutritional biochemistry》2012,23(6):640-645
Lipid metabolism in a child may be altered when the mother has a high-fat diet (HFD), but it is unclear whether the lipid metabolism of future offspring (grandchildren) is also changed under these circumstances. In this study, we examined the influence of intake of an HFD beyond one generation on offspring in normal mice. Parent mice fed an HFD were bred and the resultant second and third generations were also fed an HFD. The diets used in the study had approximately 20% more energy than a standard chow diet. Changes in lipid metabolism were examined in each generation. Intake of an HFD from generation to generation promoted lipid accumulation in the white adipose tissue of female mice, increased lipid, glucose and insulin levels in the serum, increased the activities of enzymes associated with fatty acid metabolism in the liver, promoted lipid accumulation in hepatocytes and adipocytes and increased the mRNA levels of Cdkn1a in the liver and white adipose tissue. These results suggest that activation of Cdkn1a promoted lipid accumulation in the liver and white adipose tissue of third-generation female mice that were offspring from earlier generations fed HFDs. Moreover, intake of a high-energy diet beyond one generation led to offspring with obesity, fatty liver and hyperinsulinemia. 相似文献
104.
Molecular cloning of human growth inhibitory factor cDNA and its down-regulation in Alzheimer''s disease. 总被引:6,自引:0,他引:6 下载免费PDF全文
In previous studies, we discovered a growth inhibitory factor (GIF) that was abundant in normal human brain, but greatly reduced in Alzheimer's disease (AD) brain. Molecular cloning of a full-length cDNA for human GIF revealed that the GIF had striking homology to metallothioneins. Furthermore, it was determined that the GIF gene was on chromosome 16, as are the metallothionein genes. GIF, in contrast to metallothioneins, was found to be expressed exclusively in the nervous system. The GIF protein produced by Escherichia coli harboring the GIF cDNA in a prokaryotic expression vector inhibited the growth of neonatal rat cortical neurons. These results indicate that GIF is a new member of the metallothionein family with distinct tissue-specific expression and functions. Northern blot analysis revealed that expression of the GIF mRNA is drastically decreased in AD brains. The result raises the possibility that down-regulation of the GIF gene in AD brain plays an important role in the pathogenesis of AD. 相似文献
105.
Extinction is an integral part of normal healthy fear responses, while it is compromised in several fear-related mental conditions in humans, such as post-traumatic stress disorder (PTSD). Although much research has recently been focused on fear extinction, its molecular and cellular underpinnings are still unclear. The development of animal models for extinction will greatly enhance our approaches to studying its neural circuits and the mechanisms involved. Here, we describe two gene-knockout mouse lines, one with impaired and another with enhanced extinction of learned fear. These mutant mice are based on fear memory-related genes, stathmin and gastrin-releasing peptide receptor (GRPR). Remarkably, both mutant lines showed changes in fear extinction to the cue but not to the context. We performed indirect imaging of neuronal activity on the second day of cued extinction, using immediate-early gene c-Fos. GRPR knockout mice extinguished slower (impaired extinction) than wildtype mice, which was accompanied by an increase in c-Fos activity in the basolateral amygdala and a decrease in the prefrontal cortex. By contrast, stathmin knockout mice extinguished faster (enhanced extinction) and showed a decrease in c-Fos activity in the basolateral amygdala and an increase in the prefrontal cortex. At the same time, c-Fos activity in the dentate gyrus was increased in both mutant lines. These experiments provide genetic evidence that the balance between neuronal activities of the amygdala and prefrontal cortex defines an impairment or facilitation of extinction to the cue while the hippocampus is involved in the context-specificity of extinction. 相似文献
106.
T Hijiya K Yamashita M Kojima Y Uchida S Katayama T Torii H Shiragami K Izawa 《Nucleosides & nucleotides》1999,18(4-5):653-654
An economical synthesis of famciclovir from N-2-acetyl-7-benzylguanine by a novel regioselective alkylation with the diester cyclopropane compound was developed. 相似文献
107.
108.
Hirano Y Kaneko T Okamoto K Bai M Yashiroda H Furuyama K Kato K Tanaka K Murata S 《The EMBO journal》2008,27(16):2204-2213
The 20S proteasome is the catalytic core of the 26S proteasome. It comprises four stacked rings of seven subunits each, alpha(1-7)beta(1-7)beta(1-7)alpha(1-7). Recent studies indicated that proteasome-specific chaperones and beta-subunit appendages assist in the formation of alpha-rings and dimerization of half-proteasomes, but the process involved in the assembly of beta-rings is poorly understood. Here, we clarify the mechanism of beta-ring formation on alpha-rings by characterizing assembly intermediates accumulated in cells depleted of each beta-subunit. Starting from beta2, incorporation of beta-subunits occurs in an orderly manner dependent on the propeptides of beta2 and beta5, and the C-terminal tail of beta2. Unexpectedly, hUmp1, a chaperone functioning at the final assembly step, is incorporated as early as beta2 and is required for the structural integrity of early assembly intermediates. We propose a model in which beta-ring formation is assisted by both intramolecular and extrinsic chaperones, whose roles are partially different between yeast and mammals. 相似文献
109.
Reactive oxygen species (ROS) have the potential to damage cellular components, such as protein, resulting in loss of function and structural alteration of proteins. The oxidative process affects a variety of side amino acid groups, some of which are converted to carbonyl compounds. We have previously shown that a prostaglandin D2 metabolite, 15-deoxy-delta(12,14)-prostaglandin J2 (15d-PGJ2), is the potent inducer of intracellular oxidative stress on human neuroblastoma SH-SY5Y cells [Kondo, M., Oya-Ito, T., Kumagai, T., Osawa, T., and Uchida, K. (2001) Cyclopentenone prostaglandins as potential inducers of intracellular oxidative stress, J. Biol. Chem. 276, 12076-12083]. In the present study, to elucidate the molecular mechanism underlying the oxidative stress-mediated cell degeneration, we analyzed the protein carbonylation on SH-SY5Y cells when these cells were submitted to an endogenous inducer of ROS production. Upon exposure of SH-SY5Y cells to this endogenous electrophile, we observed significant accumulation of protein carbonyls within the cells. Proteomic analysis of oxidation-sensitive proteins showed that the major intracellular target of protein carbonylation was one of the regulatory subunits in 26 S proteasome, S6 ATPase. Accompanied by a dramatic increase in protein carbonyls within S6 ATPase, the electrophile-induced oxidative stress exerted a significant decrease in the S6 ATPase activities and a decreased ability of the 26 S proteasome to degrade substrates. Moreover, in vitro oxidation of 26 S proteasome with a metal-catalyzed oxidation system also confirmed that S6 ATPase represents the most oxidation-sensitive subunit in the proteasome. These and the observation that down-regulation of S6 ATPase by RNA interference resulted in the enhanced accumulation of ubiquitinated proteins suggest that S6 ATPase is a molecular target of ROS under conditions of electrophile-induced oxidative stress and that oxidative modification of this regulatory subunit of proteasome may be functionally associated with the altered recognition and degradation of proteasomal substrates in the cells. 相似文献
110.
The present study was undertaken to characterize the in vivo 1,4-dihydropyridine (DHP) receptor binding of long-acting 1,4-DHP calcium channel antagonists in the mesenteric artery and other tissues of SHR. In vivo specific binding of (+)-[3H]PN 200-110 in the SHR mesenteric artery was significantly (36.6-49.7 %) reduced 1-8 h after oral administration of benidipine (1.84 micromol/kg). A greater reduction in (+)-[3H]PN 200-110 binding in the mesenteric artery was observed at a higher dose (5.53 micromol/kg) of this drug. This dose of benidipine also reduced significantly the in vivo specific (+)-[3H]PN 200-110 binding in the aorta but not in the myocardium and cerebral cortex. Following oral administration of amlodipine (17.6 micromol/kg), a significant (51.7-94.2 %) reduction in (+)-[3H]PN 200-110 binding was seen at 1-18 h in the mesenteric artery and at 1-12 h in the aorta. Only a slight reduction in myocardial and cerebral cortical (+)-[3H]PN 200-110 binding was seen following amlodipine administration. In contrast, oral administration of nifedipine (28.9 micromol/kg) reduced markedly in vivo (+)-[3H]PN 200-110 binding in all the tissues of SHR at 1-6 h, and the degree and time-course of the reduction did not differ significantly among the tissues. The area under the curve (AUC) for the receptor occupancy vs time was calculated from the reduction rate (%) of in vivo specific (+)-[3H]PN 200-110 binding. The ratios of the AUCmesenteric artery to AUCaorta or AUCmesenteric artery to AUCmyocardium after oral administration of benidipine and amlodipine were greater than the corresponding value for nifedipine. The degree and time-course of arterial receptor occupancy by benidipine and amlodipine agreed well with those of their hypotensive effects in the conscious SHR. In conclusion, the present study demonstrates that benidipine and amlodipine may occupy, in a more selective and sustained manner, 1,4-DHP receptors in arterial tissues than in other tissues of SHR, and thus, such receptor binding specificity may be responsible for the long-lasting hypotensive effects of these drugs. 相似文献