首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   624篇
  免费   40篇
  2023年   3篇
  2022年   17篇
  2021年   27篇
  2020年   12篇
  2019年   15篇
  2018年   15篇
  2017年   12篇
  2016年   37篇
  2015年   37篇
  2014年   56篇
  2013年   44篇
  2012年   56篇
  2011年   54篇
  2010年   48篇
  2009年   27篇
  2008年   32篇
  2007年   27篇
  2006年   35篇
  2005年   28篇
  2004年   26篇
  2003年   24篇
  2002年   17篇
  2001年   2篇
  1999年   1篇
  1998年   2篇
  1997年   4篇
  1996年   1篇
  1994年   1篇
  1992年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有664条查询结果,搜索用时 2 毫秒
71.
72.
In this study, we investigated the expression of TLR5 in human corneal epithelial cells (CEC), and the functional outcome of TLR5 triggering by flagellins of pathogenic- and nonpathogenic bacteria. Flagellins derived from Pseudomonas aeruginosa, Salmonella typhimurium, Serratia marcescense or Bacillus subtilis were used. The TLR5 protein and TLR5 specific mRNA expression was evident on human CEC. In human corneal epithelium tissues, TLR5 protein was detected at the basal and wing cells of the tissues. Ocular pathogenic bacteria, namely P. aeruginosa and S. marcescense, derived flagellin induced the significantly increased level of gene activation and IL-6 and IL-8 production. In contrast, ocular nonpathogenic S. typhimurium- and B. subtilis-derived flagellin induced neither the gene activation nor the increased production of IL-6 and IL-8 in human CEC. Human CEC would respond only to flagellin derived of ocular pathogenic bacteria, but not to those derived of ocular nonpathogenic bacteria, to generate pro-inflammatory cytokines.  相似文献   
73.
LKB1 is a 50 kDa serine/threonine kinase that phosphorylates and activates the catalytic subunit of AMPK at its T-loop residue Thr 172. We prepared adenoviruses expressing the constitutive active (wild-type) form (CA) or dominant negative (kinase inactive, D194A mutant) form (DN) of LKB1 and overexpressed these proteins in cultured myotubes (C2C12 cells) and rat hepatoma cells (FAO cells). When analyzed by immunoblotting with the antibody against Thr172-phosphorylated AMPK, the phosphorylation of AMPK was increased (2.5-fold) and decreased (0.4-fold) in cells expressing CA and DN LKB1, respectively, as compared with Lac-Z expressing control cells. Immunoprecipitation experiments, using isoform-specific antibody, revealed these alterations of AMPK phosphorylation to be attributable to altered phosphorylation of AMPK alpha2, but not alpha1 catalytic subunits, strongly suggesting the alpha2 catalytic subunit to be the major substrate for LKB1 in mammalian cells. In addition, adiponectin or AICAR-stimulated AMPK phosphorylation was inhibited by overexpression of DN LKB1, while phenformin-stimulated phosphorylation was unaffected. These results may explain the difference in AMPK activation mechanisms between AMP and phenformin, and also indicate that AMPK phosphorylation by LKB1 is involved in AMP-stimulated AMPK activation. As a downstream target for AMPK, AICAR-induced glucose uptake and ACCbeta phosphorylation were found to be significantly reduced in DN LKB1 expressing C2C12 cells. The expression of key enzymes for gluconeogenesis, glucose-6-phosphatase and phosphoenolpyruvate carboxykinase, was also dependent on LKB1 activities in FAO cells. These results demonstrate that LKB1 is a crucial regulator of AMPK activation in muscle and liver cells and, therefore, that LKB1 activity is potentially of importance to our understanding of glucose and lipid metabolism.  相似文献   
74.
Dual-color fluorescence cross-correlation spectroscopy (FCCS) is a promising technique for quantifying protein-protein interactions. In this technique, two different fluorescent labels are excited and detected simultaneously within a common measurement volume. Difficulties in aligning two laser lines and emission crossover between the two fluorophores, however, make this technique complex. To overcome these limitations, we developed a fluorescent protein with a large Stokes shift. This protein, named Keima, absorbs and emits light maximally at 440 nm and 620 nm, respectively. Combining a monomeric version of Keima with cyan fluorescent protein allowed dual-color FCCS with a single 458-nm laser line and complete separation of the fluorescent protein emissions. This FCCS approach enabled sensitive detection of proteolysis by caspase-3 and the association of calmodulin with calmodulin-dependent enzymes. In addition, Keima and a spectral variant that emits maximally at 570 nm might facilitate simultaneous multicolor imaging with single-wavelength excitation.  相似文献   
75.
76.
A site-specific isotope labeling technique of long RNA molecules was established. This technique is comprised of two simple enzymatic reactions, namely a guanosine transfer reaction of group I self-splicing introns and a ligation with T4 DNA ligase. The trans-acting group I self-splicing intron with its external cofactor, 'isotopically labeled guanosine 5'-monophosphate' (5'-GMP), steadily gave a 5'-residue-labeled RNA fragment. This key reaction, in combination with a ligation of 5'-remainder non-labeled sequence, allowed us to prepare a site-specifically labeled RNA molecule in a high yield, and its production was confirmed with (15)N NMR spectroscopy. Such a site-specifically labeled RNA molecule can be used to detect a molecular interaction and to probe chemical features of catalytically/structurally important residues with NMR spectroscopy and possibly Raman spectroscopy and mass spectrometry.  相似文献   
77.
Tight junctions (TJs) connect epithelial cells and form a semipermeable barrier that only allows selective passage of ions and solutes across epithelia. Here we show that mice lacking EpCAM, a putative cell adhesion protein frequently overexpressed in human cancers, manifest intestinal barrier defects and die shortly after birth as a result of intestinal erosion. EpCAM was found to be highly expressed in the developing intestinal epithelium of wild-type mice and to localize to cell-cell junctions including TJs. Claudin-7 colocalized with EpCAM at cell-cell junctions, and the two proteins were found to associate with each other. Claudins 2, 3, 7, and 15 were down-regulated in the intestine of EpCAM mutant mice, with claudin-7 being reduced to undetectable levels. TJs in the mutant intestinal epithelium were morphologically abnormal with the network of TJ strands scattered and dispersed. Finally, the barrier function of the intestinal epithelium was impaired in the mutant animals. These results suggest that EpCAM contributes to formation of intestinal barrier by recruiting claudins to cell-cell junctions.  相似文献   
78.
Hepatitis C virus core protein (Core) contributes to HCV pathogenicity. Here, we demonstrate that Core impairs growth in budding yeast. We identify HSP90 inhibitors as compounds that reduce intracellular Core protein level and restore yeast growth. Our results suggest that HSC90 (Hsc82) may function in the protection of the nascent Core polypeptide against degradation in yeast and the C-terminal region of Core corresponding to the organelle-interaction domain was responsible for Hsc82-dependent stability. The yeast system may be utilized to select compounds that can direct the C-terminal region to reduce the stability of Core protein.  相似文献   
79.
Mannanase is an important enzyme involved in the degradation of mannan, production of bioactive oligosaccharides, and biobleaching of kraft pulp. Mannanase must be thermostable for use in industrial applications. In a previous study, we found that the thermal stability of mannanase from Streptomyces thermolilacinus (StMan) and Thermobifida fusca (TfMan) is enhanced by calcium. Here, we investigated the relationship between the three-dimensional structure and primary sequence to identify the putative calcium-binding site. The results of site-directed mutagenesis experiments indicated that Asp-285, Glu-286, and Asp-287 of StMan (StDEDAAAdC) and Asp-264, Glu-265, and Asp-266 of TfMan (TfDEDAAAdC) were the key residues for calcium binding affinity. Isothermal titration calorimetry revealed that the catalytic domain of StMan and TfMan (StMandC and TfMandC, respectively) bound calcium with a Ka of 3.02 × 104 M−1 and 1.52 × 104 M−1, respectively, both with stoichiometry consistent with one calcium-binding site per molecule of enzyme. Non-calcium-binding mutants (StDEDAAAdC and TfDEDAAAdC) did not show any calorimetric change. From the primary structure alignment of several mannanases, the calcium-binding site was found to be highly conserved in GH5 bacterial mannanases. This is the first study indicating enhanced thermal stability of GH5 bacterial mannanases by calcium binding.  相似文献   
80.
Fatty acid composition is an important economic trait for both dairy and beef cattle and controlled by genetic factors. Candidate genes controlling fatty acid composition may be found in fat synthesis and metabolism pathways. Acetyl-CoA carboxylase is the flux-determining enzyme in the regulation of fatty acid synthesis in animal tissues. One of two isozymes of this enzyme, acetyl-CoA carboxylase-α (ACACA), catalyses the first committed step of fatty acid synthesis in mammalian cytosol, leading to the biosynthesis of long-chain fatty acids. In the current study, the sequence comparison of the coding sequence (CDS) and two promoter regions (PIA and PIII) in bovine ACACA gene was performed between Japanese Black and Holstein cattle to detect nucleotide polymorphisms influencing fatty acid composition in milk and beef. Five single nucleotide polymorphisms (SNPs) were identified in the CDS region, 28 SNPs in the PIA region and three SNPs in the PIII region. Association study revealed that CCT/CCT type of PIII_#1, #2/PIA_#26 indicated a higher percentage of C14:0 in the milk of the Holstein cattle than CCT/GTC type (p = 0.050) and that a difference of the percentage of C16:0 was observed between CCT/CCT and GTC/GTC type (p = 0.023). CDS_#2 T/T type indicated a higher percentage of C18:0 than T/C type (p = 0.008). In addition, the Japanese Black cattle with CC/GT type of PIII_#1, #2 showed a higher percentage of C18:2 in the meat than those with GT/GT type (p = 0.025). Since PIII is the promoter specific to mammary gland during lactation, the altered expression of the ACACA gene owing to the SNPs in the PIII region may influence the fatty acid composition in the milk.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号