首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1895篇
  免费   128篇
  2022年   17篇
  2021年   32篇
  2020年   21篇
  2019年   26篇
  2018年   30篇
  2017年   36篇
  2016年   58篇
  2015年   64篇
  2014年   90篇
  2013年   95篇
  2012年   101篇
  2011年   121篇
  2010年   87篇
  2009年   64篇
  2008年   86篇
  2007年   84篇
  2006年   80篇
  2005年   75篇
  2004年   79篇
  2003年   85篇
  2002年   65篇
  2001年   51篇
  2000年   38篇
  1999年   49篇
  1998年   19篇
  1997年   17篇
  1996年   14篇
  1995年   9篇
  1994年   14篇
  1993年   20篇
  1992年   42篇
  1991年   37篇
  1990年   28篇
  1989年   39篇
  1988年   29篇
  1987年   21篇
  1986年   17篇
  1985年   20篇
  1984年   24篇
  1983年   10篇
  1982年   11篇
  1981年   17篇
  1980年   11篇
  1979年   12篇
  1978年   20篇
  1977年   7篇
  1975年   5篇
  1974年   5篇
  1973年   7篇
  1950年   4篇
排序方式: 共有2023条查询结果,搜索用时 15 毫秒
101.
The appropriate regulation of retinoic acid signaling is indispensable for patterning of the vertebrate central nervous system along the anteroposterior (A-P) axis. Although both CYP26A1 and CYP26C1, retinoic acid-degrading enzymes that are expressed at the anterior end of the gastrulating mouse embryo, have been thought to play an important role in central nervous system patterning, the detailed mechanism of their contribution has remained largely unknown. We have now analyzed CYP26A1 and CYP26C1 function by generating knockout mice. Loss of CYP26C1 did not appear to affect embryonic development, suggesting that CYP26A1 and CYP26C1 are functionally redundant. In contrast, mice lacking both CYP26A1 and CYP26C1 were found to manifest a pronounced anterior truncation of the brain associated with A-P patterning defects that reflect expansion of posterior identity at the expense of anterior identity. Furthermore, Cyp26a1-/-Cyp26c1-/- mice fail to produce migratory cranial neural crest cells in the forebrain and midbrain. These observations, together with a reevaluation of Cyp26a1 mutant mice, suggest that the activity of CYP26A1 and CYP26C1 is required for correct A-P patterning and production of migratory cranial neural crest cells in the developing mammalian brain.  相似文献   
102.
A new type of membrane-bound cytochrome c was found in a marine purple photosynthetic bacterium, Rhodovulum sulfidophilum. This cytochrome c was significantly accumulated in cells growing under anaerobic photosynthetic conditions and showed an apparent molecular mass of approximately 100 kDa when purified and analyzed by SDS-PAGE. The midpoint potential of this cytochrome c was 369 mV. Flash-induced kinetic measurements showed that this new cytochrome c can work as an electron donor to the photosynthetic reaction center. The gene coding for this cytochrome c was cloned and analyzed. The deduced molecular mass was nearly equal to 50 kDa. Its C-terminal heme-containing region showed the highest sequence identity to the water-soluble cytochrome c(2), although its predicted secondary structure resembles that of cytochrome c(y). Phylogenetic analyses suggested that this new cytochrome c has evolved from cytochrome c(2). We, thus, propose its designation as cytochrome c(2m). Mutants lacking this cytochrome or cytochrome c(2) showed the same growth rate as the wild type. However, a double mutant lacking both cytochrome c(2) and c(2m) showed no growth under photosynthetic conditions. It was concluded that either the membrane-bound cytochrome c(2m) or the water-soluble cytochrome c(2) work as a physiological electron carrier in the photosynthetic electron transfer pathway of Rvu. sulfidophilum.  相似文献   
103.
The aim of this study was to determine whether a 350-s recovery period allows recovery of peak power output (PPO) to its initial value under the condition of a blood lactate (La) concentration higher than 10 mmol.L-1 during repeated cycling sprints (RCS). RCS (10x10-s cycling sprints) were performed under two conditions. Under one condition, the recovery period of RCS was fixed at 35 s (RCS35), and under the other condition, a 350-s recovery period was set before the 5th and 9th sets, and a 35-s recovery period was set before the other sets (RCScomb). In RCScomb, PPO in the 5th set recovered to that in the 1st set, but PPO in the 9th set did not. Under both conditions, blood La concentration progressively increased and reached approximately 14 mmol.L-1 at the end of the RCS. In RCScomb, VO2 immediately before the 5th set was not significantly different from that immediately before the 9th set. Mean power frequency (MPF) values estimated by a surface electromyogram from the vastus lateralis in the 5th and 9th sets were significantly higher in RCScomb than in RCS35. In conclusion, a 350-s recovery period does not allow recovery of PPO to its initial value under the condition of a blood La concentration of 14 mmol.L-1 during RCS.  相似文献   
104.
Dissolution of α-chymotrypsin in nonpolar organic solvents can be achieved using hydrophobic ion pairing, whereby the polar counterions are replaced by a stoichiometric number of detergent molecules. Using Aerosol OT[AOT, sodium bis(2-octyl)sulfosuccinate], it is possible to partition significant amounts of the enzyme into alkanes and chlorocarbons. Apparent solubility in isooctane is greater than 1 mg/mL (80 μM). Necessary conditions for achieving effective partitioning of α-chymotrypsin into these solvents are described. Using CD spectroscopy, it can be shown that the AOT–α-chymotrypsin (CMT) complex retains its native secondary and tertiary structure when dissolved in alkanes, and that the globular structure is stable to more than 100°C. In contrast, α-chymotrypsin unfolds at 54°C in aqueous solution. The relative solubility of the AOT–CMT complex in a variety of alkanes and chlorocarbons is also reported. The native structure of α-chymotrypsin is maintained in carbon tetrachloride, but not in methylene chloride or chloroform. © 1995 John Wiley & Sons, Inc.  相似文献   
105.
ObjectivesMammalian DNA methyltransferases are essential to re‐establish global DNA methylation patterns during implantation, which is critical for transmitting epigenetic information to the next generation. In contrast, the significance of methyl‐CpG binding proteins (MBPs) that bind methylated CpG remains almost unknown at this stage. We previously demonstrated that Zbtb38 (also known as CIBZ)—a zinc finger type of MBP—is required for mouse embryonic stem (ES) cell proliferation by positively regulating Nanog expression. However, the physiological function of Zbtb38 in vivo remains unclear.Materials and MethodsThis study used the Cre‐loxP system to generate conditional Zbtb38 knockout mice. Cell proliferation and apoptosis were studied by immunofluorescence staining. Quantitative real‐time PCR, immunoblotting and immunofluorescence were performed to investigate the molecular mechanisms.ResultsGermline loss of the Zbtb38 single allele resulted in decreased epiblast cell proliferation and increased apoptosis shortly after implantation, leading to early embryonic lethality. Heterozygous loss of Zbtb38 reduced the expression of Nanog, Sox2, and the genes responsible for epiblast proliferation, differentiation, and cell viability. Although this early lethal phenotype, Zbtb38 is dispensable for ES cell establishment and identity.ConclusionsThese findings indicate that Zbtb38 is essential for early embryonic development via the suppression of Nanog and Sox2 expression.

Heterozygous loss of Zbtb38 leads to aberrant epiblast cell proliferation and apoptosis shortly after implantation. Heterozygous loss of Zbtb38 reduced the expression of Nanog and Sox2 in ICM and epiblast.  相似文献   
106.
Aptamers can control the biological functions of enzymes, thereby facilitating the development of novel biosensors. While aptamers that inhibit catalytic reactions of enzymes were found and used as signal transducers to sense target molecules in biosensors, no aptamers that amplify enzymatic activity have been identified. In this study, we report G-quadruplex (G4)-forming DNA aptamers that upregulate the peroxidase activity in myoglobin specifically for luminol. Using in vitro selection, one G4-forming aptamer that enhanced chemiluminescence from luminol by myoglobin''s peroxidase activity was discovered. Through our strategy—in silico maturation, which is a genetic algorithm-aided sequence manipulation method, the enhancing activity of the aptamer was improved by introducing mutations to the aptamer sequences. The best aptamer conserved the parallel G4 property with over 300-times higher luminol chemiluminescence from peroxidase activity more than myoglobin alone at an optimal pH of 5.0. Furthermore, using hemin and hemin-binding aptamers, we demonstrated that the binding property of the G4 aptamers to heme in myoglobin might be necessary to exert the enhancing effect. Structure determination for one of the aptamers revealed a parallel-type G4 structure with propeller-like loops, which might be useful for a rational design of aptasensors utilizing the G4 aptamer-myoglobin pair.  相似文献   
107.
The enzyme GnT-III (beta 1,4-N-acetylglucosaminyltransferase III) catalyzes the addition of a bisecting N-acetylglucosamine (GlcNAc) residue on glycoproteins. Our previous study described that the transfection of GnT-lll into mouse melanoma cells results in the enhanced expression of E-cadherin, which in turn leads to the suppression of lung metastasis. It has recently been proposed that the phosphorylation of a tyrosine residue of beta-catenin is associated with cell migration. The present study reports on the importance of bisecting GlcNAc residues by GnT-lll on tyrosine phosphorylation of beta-catenin using three types of cancer cell lines. An addition of bisecting GlcNAc residues to E-cadherin leads to an alteration in cell morphology and the localization of beta-catenin after epidermal growth factor stimulation. These changes are the result of a down-regulation in the tyrosine phosphorylation of beta-catenin. In addition, tyrosine phosphorylation of beta-catenin by transfection of constitutively active c-src was suppressed in GnT-III transfectants as well as in the case of epidermal growth factor stimulation. Treatment with tunicamycin abolished any differences in beta-catenin phosphorylation for the mock vis à vis the GnT-lll transfectants. Thus, the addition of a specific N-glycan structure, the bisecting GlcNAc to E-cadherin-beta-catenin complex, down-regulates the intracellular signaling pathway, suggesting its implication in cell motility and the suppression of cancer metastasis.  相似文献   
108.
NBS1 (p95), the protein responsible for Nijmegen breakage syndrome, shows a weak homology to the yeast Xrs2 protein at the N terminus region, known as the forkhead-associated (FHA) domain and the BRCA1 C terminus domain. The protein interacts with hMRE11 to form a complex with a nuclease activity for initiation of both nonhomologous end joining and homologous recombination. Here, we show in vivo direct evidence that NBS1 recruits the hMRE11 nuclease complex into the cell nucleus and leads to the formation of foci by utilizing different functions from several domains. The amino acid sequence at 665-693 on the C terminus of NBS1, where a novel identical sequence with yeast Xrs2 protein was found, is essential for hMRE11 binding. The hMRE11-binding region is necessary for both nuclear localization of the complex and for cellular radiation resistance. On the other hand, the FHA domain regulates nuclear foci formation of the multiprotein complex in response to DNA damage but is not essential for nuclear transportation of the complex and radiation resistance. Because the FHA/BRCA1 C terminus domain is widely conserved in eukaryotic nuclear proteins related to the cell cycle, gene regulation, and DNA repair, the foci formation could be associated with many phenotypes of Nijmegen breakage syndrome other than radiation sensitivity.  相似文献   
109.
The crystal structure of the Pyrus pyrifolia pistil ribonuclease (S(3)-RNase) responsible for gametophytic self-incompatibility was determined at 1.5-A resolution. It consists of eight helices and seven beta-strands, and its folding topology is typical of RNase T(2) family enzymes. Based on a structural comparison of S(3)-RNase with RNase Rh, a fungal RNase T(2) family enzyme, the active site residues of S(3)-RNase assigned were His(33) and His(88) as catalysts and Glu(84) and Lys(87) as stabilizers of an intermediate in the transition state. Moreover, amino acid residues that constitute substrate binding sites of the two RNases could be superimposed geometrically. A hypervariable (HV) region that has an S-allele-specific sequence comprises a long loop and short alpha-helix. This region is far from the active site cleft, exposed on the molecule's surface, and positively charged. Four positively selected (PS) regions, in which the number of nonsynonymous substitutions exceeds that of synonymous ones, are located on either side of the active site cleft, and accessible to solvent. These structural features suggest that the HV or PS regions may interact with a pollen S-gene product(s) to recognize self and non-self pollen.  相似文献   
110.
Here we isolated tautomycetin, TC, and examined its phosphatase inhibitory activity. Recently we have reported that the left-hand moiety of tautomycin, TM, and the right one containing the spiroketal are essentially required for inhibition of protein phosphatase, PP, and induction of apoptosis, respectively. TC is structurally almost identical to TM except that TC is lacking the spiroketal, which has the potential apoptosis-inducing activity. TC specifically inhibited PP1 activity, IC50 values for purified PP1 and PP2A enzymes being 1.6 and 62 nM, respectively, whereas the IC50 values of TM were 0.21 and 0.94 nM, respectively. These results demonstrate that TC is the most specific PP1 inhibitor out of over 40 species of natural phosphatase inhibitors reported, strongly suggesting that TC is a novel powerful tool to elucidate the physiological roles of PP1 in various biological events.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号