首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4622篇
  免费   310篇
  4932篇
  2022年   21篇
  2021年   46篇
  2020年   23篇
  2019年   35篇
  2018年   49篇
  2017年   40篇
  2016年   62篇
  2015年   100篇
  2014年   134篇
  2013年   238篇
  2012年   208篇
  2011年   210篇
  2010年   131篇
  2009年   125篇
  2008年   181篇
  2007年   216篇
  2006年   199篇
  2005年   197篇
  2004年   208篇
  2003年   210篇
  2002年   208篇
  2001年   189篇
  2000年   205篇
  1999年   158篇
  1998年   74篇
  1997年   70篇
  1996年   57篇
  1995年   44篇
  1994年   38篇
  1993年   35篇
  1992年   84篇
  1991年   108篇
  1990年   96篇
  1989年   97篇
  1988年   83篇
  1987年   82篇
  1986年   77篇
  1985年   79篇
  1984年   63篇
  1983年   63篇
  1982年   34篇
  1981年   23篇
  1979年   41篇
  1978年   26篇
  1977年   30篇
  1976年   21篇
  1975年   21篇
  1974年   24篇
  1973年   30篇
  1970年   18篇
排序方式: 共有4932条查询结果,搜索用时 0 毫秒
921.
922.
923.
The 395-residue proteolytic fragment E3, which comprises the two most C-terminal LG modules of the mouse laminin alpha1 chain, was previously shown to contain major binding sites for heparin, alpha-dystroglycan and sulfatides. The same fragment (alpha1LG4-5) and its individual alpha1LG4 and alpha1LG5 modules have now been obtained by recombinant production in mammalian cells. These fragments were apparently folded into a native form, as shown by circular dichroism, electron microscopy and immunological assays. Fragment alpha1LG4-5 bound about five- to tenfold better to heparin, alpha-dystroglycan and sulfatides than E3. These binding activities could be exclusively localized to the alpha1LG4 module. Side-chain modifications and proteolysis demonstrated that Lys and Arg residues in the C-terminal region of alpha1LG4 are essential for heparin binding. This was confirmed by 14 single to triple point mutations, which identified three non-contiguous basic regions (positions 2766-2770, 2791-2793, 2819-2820) as contributing to both heparin and sulfatide binding. Two of these regions were also recognized by monoclonal antibodies which have previously been shown to inhibit heparin binding. The same three regions and a few additional basic residues also make major contributions to the binding of the cellular receptor alpha-dystroglycan, indicating a larger binding epitope. The data are also consistent with previous findings that heparin competes for alpha-dystroglycan binding.  相似文献   
924.
Li Y  Sasaki H 《Cell research》2011,21(3):466-473
Genomic imprinting, an epigenetic gene-marking phenomenon that occurs in the germline, leads to parental-origin-specific expression of a small subset of genes in mammals. Imprinting has a great impact on normal mammalian development, fetal growth, metabolism and adult behavior. The epigenetic imprints regarding the parental origin are established during male and female gametogenesis, passed to the zygote through fertilization, maintained throughout development and adult life, and erased in primordial germ cells before the new imprints are set. In this review, we focus on the recent discoveries on the mechanisms involved in the reprogramming and maintenance of the imprints. We also discuss the epigenetic changes that occur at imprinted loci in induced pluripotent stem cells.  相似文献   
925.
The spino-occipital nerve (SO) and ventral rami of the spinal nerves (SV) in 10 tetraodontiform families and 5 outgroup taxa were examined, with special reference to pectoral and pelvic fin muscle innervation. Compared with the outgroup taxa, tetraodontiforms were characteristic in having SO3 + SV1 (SO3 in tetraodontids) that gave off several lateral subbranches to the pectoral fin base and SO participation in infracarinalis anterior innervation. SO and SV1 were connected with one another (6 patterns) before entering the pectoral fin muscles in most species, including the outgroup taxa, resulting in the participation of SV1 in the innervation of almost all of the pectoral fin muscles. SO3 + SV1 was present in all tetraodontiforms (except in 2 tetraodontids having only SO3) and the outgroup taxa, an upper dorsal branch uniformly extending dorsally into the pectoral fin base. The pectoral fin base also received a branch ventrally, but its identity differed (participation or nonparticipation of SV2). SV1 alone constituting the branch was a derived condition occurring in Aracanidae, Ostraciidae, Tetraodontidae, Diodontidae, and Molidae. No strong characters supporting a tetraodontiform sister group were recognized among the spino-occipital nerve and ventral rami of spinal nerves.  相似文献   
926.
The predominant pathway for phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P2) synthesis is thought to be phosphorylation of phosphatidylinositol 4-phosphate at the 5 position of the inositol ring by type I phosphatidylinositol phosphate kinases (PIPK): PIPKIα, PIPKIβ, and PIPKIγ. PIPKIγ has been shown to play a role in PI(4,5)P2 synthesis in brain, and the absence of PIPKIγ is incompatible with postnatal life. Conversely, mice lacking PIPKIα or PIPKIβ (isoforms are referred to according to the nomenclature of human PIPKIs) live to adulthood, although functional effects in specific cell types are observed. To determine the contribution of PIPKIα and PIPKIβ to PI(4,5)P2 synthesis in brain, we investigated the impact of disrupting multiple PIPKI genes. Our results show that a single allele of PIPKIγ, in the absence of both PIPKIα and PIPKIβ, can support life to adulthood. In addition, PIPKIα alone, but not PIPKIβ alone, can support prenatal development, indicating an essential and partially overlapping function of PIPKIα and PIPKIγ during embryogenesis. This is consistent with early embryonic expression of PIPKIα and PIPKIγ but not of PIPKIβ. PIPKIβ expression in brain correlates with neuronal differentiation. The absence of PIPKIβ does not impact embryonic development in the PIPKIγ knock-out (KO) background but worsens the early postnatal phenotype of the PIPKIγ KO (death occurs within minutes rather than hours). Analysis of PIP2 in brain reveals that only the absence of PIPKIγ significantly impacts its levels. Collectively, our results provide new evidence for the dominant importance of PIPKIγ in mammals and imply that PIPKIα and PIPKIβ function in the generation of specific PI(4,5)P2 pools that, at least in brain, do not have a major impact on overall PI(4,5)P2 levels.  相似文献   
927.
Hyperoxia-induced lung injury complicates the care of many critically ill patients who receive supplemental oxygen therapy. Hyperoxic injury to lung tissues is mediated by reactive oxygen species, inflammatory cell activation, and release of cytotoxic cytokines. IFN-gamma is known to be induced in lungs exposed to high concentrations of oxygen; however, its contribution to hyperoxia-induced lung injury remains unclear. To determine whether IFN-gamma contributes to hyperoxia-induced lung injury, we first used anti-mouse IFN-gamma antibody to blockade IFN-gamma activity. Administration of anti-mouse IFN-gamma antibody inhibited hyperoxia-induced increases in pulmonary alveolar permeability and neutrophil migration into lung air spaces. To confirm that IFN-gamma contributes to hyperoxic lung injury, we then simultaneously exposed IFN-gamma-deficient (IFN-gamma-/-) mice and wild-type mice to hyperoxia. In the early phase of hyperoxia, permeability changes and neutrophil migration were significantly reduced in IFN-gamma-/- mice compared with wild-type mice, although the differences in permeability changes and neutrophil migration between IFN-gamma-/- mice and wild-type mice were not significant in the late phase of hyperoxia. The concentrations of IL-12 and IL-18, two cytokines that play a role in IFN-gamma induction, significantly increased in bronchoalveolar lavage fluid after exposure to hyperoxia in both IFN-gamma-/- mice and wild-type mice, suggesting that hyperoxia initiates upstream events that result in IFN-gamma production. Although there was no significant difference in overall survival, IFN-gamma-/- mice had a better early survival rate than did the wild-type mice. Therefore, these data strongly suggest that IFN-gamma is a key molecular contributor to hyperoxia-induced lung injury.  相似文献   
928.
Phosphatidic acid (PtdOH) has been shown not only to stimulate autophosphorylation and autoactivation of phosphorylase kinase of rabbit skeletal muscle but also to decrease the apparent Ka for Ca2+ on autophosphorylation sharply [Negami et al. (1985) Biochem. Biophys. Res. Commun. 131, 712-719]. In this study we investigated the interaction between PtdOH and other phospholipids on autophosphorylation and autoactivation of this enzyme. Acidic phospholipids, such as phosphatidylserine (PtdSer), phosphatidylinositol (PtdIns) and PtdOH, stimulated this reaction about 2-4-fold, and the approximate Ka values of this reaction were 10 micrograms/ml, 6.3 micrograms/ml and 30 micrograms/ml respectively. The molar ratio of PtdIns and PtdSer with maximal effect on autophosphorylation was about 1:1. Under these conditions PtdOH stimulated the initial velocity of autophosphorylation about 5.2-fold. When fully autophosphorylated, about 12-13 mol phosphate per tetramer (alpha beta gamma delta) were incorporated in the presence of mixed acidic phospholipids (PtdOH:PtdIns:PtdSer = 2:1:1), which was about twice as much as values observed without effectors. In the presence of mixed acidic phospholipids there was a concomitant enhancement of kinase activity, about 30-40-fold at pH 6.8 and 2.5-3-fold at pH 8.2. Mixed acidic phospholipids sharply decreased an apparent Ka for Ca2+ from 4 X 10(-5) M to 8 X 10(-7) M. With mixed acidic phospholipids as effectors this autophosphorylation occurred through an intramolecular mechanism. Based on these results, autophosphorylation and autoactivation of phosphorylase kinase in the presence of acidic phospholipids may account for an important regulatory mechanism of glycogenolysis in muscle contraction.  相似文献   
929.
Hepatitis B virus (HBV) causes acute and chronic liver disease. Especially, chronic hepatitis is a major risk factor of liver cirrhosis and hepatocellular carcinoma. Viral kinetics of HBV observed in peripheral blood is quite different depending on the clinical course of hepatitis. But the relationship between the intracellular replication dynamics and clinical course of HBV infection is unclear. Further it is very difficult to predict the long time course of hepatitis because the nature of HBV is changed by mutation within host with high mutation rate. We investigate the intracellular replication dynamics and within host evolution of HBV by using a mathematical model. Two different intracellular replication patterns of HBV, “explosive” and “arrested”, are switched depending on the viral gene expression pattern. In the explosive replication, prominent growth of HBV is observed. On the other hand, the virion production is restricted in the arrested replication. It is suggested that the arrested and explosive replication is associated with chronic hepatitis and exacerbation of hepatitis respectively. It is shown by our evolutionary simulation that the exacerbation of hepatitis is caused by the emergence of explosive genotype of HBV from arrested genotype by mutation during chronic hepatitis. It is also shown that chronic infection without exacerbation is maintained by short waiting time for virion release and superinfection with arrested genotype. It is suggested that extension of waiting time for virion release and existence of uninfected hepatocyte in the liver may become risk factors for the exacerbation of hepatitis.  相似文献   
930.
Ypt/Rab proteins are Ras-related small GTPases that act on the intracellular membrane through the trafficking pathway, and their function depends on their localization. Approximately 25 genes encoding Ypt3/Rab11-related proteins exist in Arabidopsis, but the reason for the presence of many genes in plants remains unclear. Pea Pra2 and Pra3, members of Ypt3/Rab11, are closely related proteins. Because possible orthologs are conserved among dicots, they can be studied to determine their possible localization. Biochemical analysis revealed that these proteins were localized on distinct membranes in pea. Furthermore, using green fluorescent protein-Pra2 and green fluorescent protein-Pra3 fusion proteins, we demonstrated that these proteins are distinctively localized on the trafficking pathway in tobacco Bright Yellow 2 cells. Pra2 was predominantly localized on Golgi stacks and endosomes, which did not support the localization of Pra2 on the endoplasmic reticulum (Kang, J. G., Yun, J., Kim, D. H., Chung, K. S., Fujioka, S., Kim, J. I., Dae, H. W., Yoshida, S., Takatsuto, S., Song, P. S., and Park, C. M. (2001) Cell 105, 625--636). In contrast, Pra3 was likely to be localized on the trans-Golgi network and/or the prevacuolar compartment. We concluded that Pra2 and Pra3 proteins are distinctively localized on the trafficking pathway. This finding suggests that functional diversification takes place in the plant Ypt3/Rab11 family.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号