首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   590篇
  免费   36篇
  2021年   4篇
  2020年   3篇
  2019年   6篇
  2018年   5篇
  2017年   5篇
  2016年   8篇
  2015年   20篇
  2014年   18篇
  2013年   60篇
  2012年   30篇
  2011年   31篇
  2010年   16篇
  2009年   19篇
  2008年   41篇
  2007年   34篇
  2006年   25篇
  2005年   36篇
  2004年   28篇
  2003年   31篇
  2002年   27篇
  2001年   4篇
  2000年   8篇
  1999年   6篇
  1998年   7篇
  1997年   7篇
  1996年   9篇
  1995年   12篇
  1994年   6篇
  1993年   5篇
  1992年   7篇
  1991年   10篇
  1990年   9篇
  1989年   8篇
  1988年   6篇
  1987年   2篇
  1985年   7篇
  1984年   10篇
  1983年   5篇
  1982年   5篇
  1981年   4篇
  1980年   6篇
  1979年   3篇
  1978年   3篇
  1977年   4篇
  1975年   3篇
  1973年   6篇
  1972年   5篇
  1962年   2篇
  1959年   1篇
  1929年   1篇
排序方式: 共有626条查询结果,搜索用时 578 毫秒
51.
Pituitary tumor GH3 cells synthesize and secrete both growth hormone (GH) and prolactin (PRL). Morphological and functional changes of GH3 cells induced by epidermal growth factor (EGF, 10 nM), insulin (300 nM), and estradiol-17beta (E2, 1 nM) were studied. Treatment of cultures of GH3 cells for 6 days with EGF, insulin, or E2 alone, and with EGF plus E2 did not affect the total number of GH3 cells, but a combination of EGF, insulin, and E2 decreased the total number of GH3 cells compared with control treatment. DNA-synthesizing cells were detected by monitoring 5-bromo-2'-deoxyuridine (BrdU) uptake. EGF, E2, or a combination of EGF, insulin, and E2 significantly decreased the proportion of BrdU-labeled cells (21.1+/-1.7%, 21.0+/-1.4%, 18.2+/-1.3%; P<0.05, P<0.05, P<0.01, respectively) compared with control treatment (28.6+/-1.5%), but insulin did not (31.4+/-2.4%). Immunocytochemical analysis of GH3 cells cultured in 5% fetal calf serum-supplemented medium (control) showed that about 70% of all GH3 cells were GH-immunoreactive cells (GH-ir cells), apparently containing only GH, and 14% were mammosomatotrophs (MS cells), containing both GH and PRL, while PRL-immunoreactive cells (PRL-ir cells), containing only PRL, were not detected. No GH or PRL immunoreactivity could be detected in the remaining cells (15%). EGF decreased the proportion of GH-ir cells. The effects of EGF were enhanced by simultaneous exposure to insulin and E2; this decreased the proportion of GH-ir cells to about 20% of the total GH3 cells and significantly increased the proportion of MS cells to 300% of controls. Treatment with EGF plus insulin, EGF plus E2, or a combination of EGF, insulin, and E2 all stimulated the appearance of PRL-ir cells. Exposure to EGF caused a significant decrease in GH mRNA (P<0.01) and a significant increase in PRL mRNA (P<0.05). These observations suggest that EGF is closely involved in differentiation of PRL-ir cells from GH-ir cells via MS cells in GH3 cell cultures. Cytosine arabinoside (10(-7) M), an inhibitor of cell division, did not affect the changes in proportion of the three cell types induced by treatment with a combination of EGF, insulin, and E2. It is therefore probable that the transdifferentiation does not require mitosis of the GH3 cells.  相似文献   
52.
Rate of light-saturated photosynthesis (Pmax) decreased duringsenescence, with no or small changes in the initial slope ofthe light-response curve (  相似文献   
53.
Treatment of oxygen-evolving Photosystem II complexes, whichlack light-harvesting chlorophyll a/b proteins, with a seriesof disuccinimidyl esters with different chain lengths yieldeda crosslinked product which consisted of one molecule each ofthe extrinsic 33 kDa and 23 kDa proteins. In addition, crosslinkingbetween the 33 kDa protein and the chlorophyll-carrying 47 kDaprotein and between the 23 kDa and 17 kDa proteins was confirmed.Thus, the three extrinsic proteins are closely associated witheach other to form a complex which is attached to the PS IIreaction center complexes. (Received December 1, 1989; Accepted May 2, 1990)  相似文献   
54.
Understanding the molecular mechanisms that convey salt tolerance in plants is a crucial issue for increasing crop yield. The ice plant (Mesembryanthemum crystallinum) is a halophyte that is capable of growing under high salt conditions. For example, the roots of ice plant seedlings continue to grow in 140 mM NaCl, a salt concentration that completely inhibits Arabidopsis thaliana root growth. Identifying the molecular mechanisms responsible for this high level of salt tolerance in a halophyte has the potential of revealing tolerance mechanisms that have been evolutionarily successful. In the present study, deep sequencing (RNAseq) was used to examine gene expression in ice plant roots treated with various concentrations of NaCl. Sequencing resulted in the identification of 53,516 contigs, 10,818 of which were orthologs of Arabidopsis genes. In addition to the expression analysis, a web-based ice plant database was constructed that allows broad public access to the data. The results obtained from an analysis of the RNAseq data were confirmed by RT-qPCR. Novel patterns of gene expression in response to high salinity within 24 hours were identified in the ice plant when the RNAseq data from the ice plant was compared to gene expression data obtained from Arabidopsis plants exposed to high salt. Although ABA responsive genes and a sodium transporter protein (HKT1), are up-regulated and down-regulated respectively in both Arabidopsis and the ice plant; peroxidase genes exhibit opposite responses. The results of this study provide an important first step towards analyzing environmental tolerance mechanisms in a non-model organism and provide a useful dataset for predicting novel gene functions.  相似文献   
55.

Objectives

The Japanese Orthopaedic Association (JOA) score is widely used to assess the severity of clinical symptoms in patients with cervical compressive myelopathy, particularly in East Asian countries. In contrast, modified versions of the JOA score are currently accepted as the standard tool for assessment in Western countries. The objective of the present study is to compare these scales and clarify their differences and interchangeability and verify their validity by comparing them to other outcome measures.

Materials and Methods

Five institutions participated in this prospective multicenter observational study. The JOA and modified JOA (mJOA) proposed by Benzel were recorded preoperatively and at three months postoperatively in patients with cervical compressive myelopathy who underwent decompression surgery. Patient reported outcome (PRO) measures, including Japanese Orthopaedic Association Cervical Myelopathy Evaluation Questionnaire (JOACMEQ), the Short Form-12 (SF-12) and the Neck Disability Index (NDI), were also recorded. The preoperative JOA score and mJOA score were compared to each other and the PRO values. A Bland-Altman analysis was performed to investigate their limits of agreement.

Results

A total of ninety-two patients were included. The correlation coefficient (Spearman’s rho) between the JOA and mJOA was 0.87. In contrast, the correlations between JOA/mJOA and the other PRO values were moderate (|rho| = 0.03 – 0.51). The correlation coefficient of the recovery rate between the JOA and mJOA was 0.75. The Bland-Altman analyses showed that limits of agreement were 3.6 to -1.2 for the total score, and 55.1% to -68.8% for the recovery rates.

Conclusions

In the present study, the JOA score and the mJOA score showed good correlation with each other in terms of their total scores and recovery rates. Previous studies using the JOA can be interpreted based on the mJOA; however it is not ideal to use them interchangeably. The validity of both scores was demonstrated by comparing these values to the PRO values.  相似文献   
56.
57.
Slingshot-1 (SSH1) is a protein phosphatase that dephosphorylates and activates cofilin, an actin-severing and -disassembling protein. SSH1 is bound to and activated by F-actin, but not G-actin. SSH1 is accumulated in the F-actin-rich lamellipodium but is also diffusely distributed in the cytoplasm. It remains unknown whether SSH1 is activated by soluble (low-level polymerized) actin filaments in the cytoplasm. In this study, we show that SSH1 binds to gelsolin via actin filaments in the cytosolic fraction. Gelsolin promoted solubilization of actin filaments and SSH1 in cell-free assays and in cultured cells. SSH1 was activated by gelsolin-generated soluble actin filaments. Furthermore, gelsolin enhanced cofilin dephosphorylation in neuregulin-stimulated cells. Our results suggest that cytosolic SSH1 forms a complex with gelsolin via soluble actin filaments and is activated by gelsolin-generated soluble actin filaments and that gelsolin promotes stimulus-induced cofilin dephosphorylation through increasing soluble actin filaments, which support SSH1 activation in the cytoplasm.  相似文献   
58.
The Wnt-induced planar cell polarity (PCP) signaling pathway is essential for polarized cell migration and morphogenesis. Dishevelled (Dvl) and its binding protein Daam1 mediate RhoA activation in this pathway. WGEF, a member of the Rho-guanine nucleotide exchange factor (Rho-GEF) family, was shown to play a role in Wnt-induced RhoA activation in Xenopus embryos. However, it has remained unknown which member(s) of a Rho-GEF family are involved in Wnt/Dvl-induced RhoA activation in mammalian cells. Here we identified p114-RhoGEF and Lfc (also called GEF-H1) as the Rho-GEFs responsible for Wnt-3a–induced RhoA activation in N1E-115 mouse neuroblastoma cells. We screened for Rho-GEF–silencing short-hairpin RNAs (shRNAs) that are capable of suppressing Dvl-induced neurite retraction in N1E-115 cells and found that p114-RhoGEF and Lfc shRNAs, but not WGEF shRNA, suppressed Dvl- and Wnt-3a–induced neurite retraction. p114-RhoGEF and Lfc shRNAs also inhibited Dvl- and Wnt-3a–induced RhoA activation, and p114-RhoGEF and Lfc proteins were capable of binding to Dvl and Daam1. Additionally, the Dvl-binding domains of p114-RhoGEF and Lfc inhibited Dvl-induced neurite retraction. Our results suggest that p114-RhoGEF and Lfc are critically involved in Wnt-3a– and Dvl-induced RhoA activation and neurite retraction in N1E-115 cells.  相似文献   
59.
We previously demonstrated using a bacterial system that the antigenotoxic activity of the anthraquinone compounds purpurin and alizarin was due to the suppression of microsomal enzyme activity involved in the activation of mutagens. In the present study we determined the effect of purpurin and alizarin on (i) MeIQx-DNA-adduct formation in mouse tissues and (ii) the activity of phases I and II enzymes in liver fractions, the liver being the target tissue of MeIQx. The amount of MeIQx-DNA adduct formed was determined using 32P-postlabeling methods. Methoxyresorufin-O-demethylase (MROD) and ethoxyresorufin-O-deethylase (EROD) enzyme activities, which reflect CYP 1A activity, were measured as markers for phase I enzymes, and UDP-glucuronyltransferase (UGT) and glutathione S-transferase (GST) activities were determined as markers for phase II enzymes. Mice fed with a diet containing 0.5% purpurin for 3 days prior to MeIQx administration had 70% fewer MeIQx-DNA adducts in the lung and kidney, and fewer DNA adducts (insignificant, statistically) in the liver compared with mice fed a diet lacking purpurin. MROD and EROD activities in the liver of these mice increased six- and eight-fold, respectively, and were higher than those determined for the control mice within 1 day following commencement of purpurin treatment. These elevated activities were maintained during treatment and declined immediately following removal of purpurin from the diet. GST and UGT activities gradually increased 2.5- and 3-fold, respectively, following purpurin treatment, and were maintained at significantly high levels even after purpurin administration ceased. Alizarin did not significantly affect DNA-adduct formation and enzyme activity, except in the case of UGT. Taken together, our results show that purpurin reduced MeIQx-DNA-adduct formation by maintaining elevated phase II enzyme activities, thereby facilitating accelerated excretion of MeIQx.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号