首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   869篇
  免费   107篇
  国内免费   1篇
  977篇
  2022年   14篇
  2021年   25篇
  2020年   9篇
  2019年   27篇
  2018年   19篇
  2017年   18篇
  2016年   23篇
  2015年   46篇
  2014年   40篇
  2013年   42篇
  2012年   66篇
  2011年   65篇
  2010年   25篇
  2009年   41篇
  2008年   46篇
  2007年   39篇
  2006年   24篇
  2005年   25篇
  2004年   25篇
  2003年   26篇
  2002年   18篇
  2001年   13篇
  2000年   9篇
  1999年   14篇
  1998年   8篇
  1997年   7篇
  1996年   11篇
  1994年   7篇
  1992年   12篇
  1991年   7篇
  1990年   14篇
  1989年   7篇
  1988年   15篇
  1987年   10篇
  1986年   12篇
  1985年   18篇
  1984年   7篇
  1983年   9篇
  1982年   5篇
  1981年   5篇
  1980年   5篇
  1979年   12篇
  1978年   9篇
  1976年   9篇
  1975年   6篇
  1974年   9篇
  1971年   5篇
  1970年   10篇
  1969年   5篇
  1968年   9篇
排序方式: 共有977条查询结果,搜索用时 0 毫秒
41.
Current understanding of the underlying molecular network and mechanism for attention-deficit hyperactivity disorder (ADHD) is lacking and incomplete. Previous studies suggest that genomic structural variations play an important role in the pathogenesis of ADHD. For effective modeling, deep learning approaches have become a method of choice, with ability to predict the impact of genetic variations involving complicated mechanisms. In this study, we examined copy number variation in whole genome sequencing from 116 African Americans ADHD children and 408 African American controls. We divided the human genome into 150 regions, and the variation intensity in each region was applied as feature vectors for deep learning modeling to classify ADHD patients. The accuracy of deep learning for predicting ADHD diagnosis is consistently around 78% in a two-fold shuffle test, compared with ∼50% by traditional k-mean clustering methods. Additional whole genome sequencing data from 351 European Americans children, including 89 ADHD cases and 262 controls, were applied as independent validation using feature vectors obtained from the African American ethnicity analysis. The accuracy of ADHD labeling was lower in this setting (∼70–75%) but still above the results from traditional methods. The regions with highest weight overlapped with the previously reported ADHD-associated copy number variation regions, including genes such as GRM1 and GRM8, key drivers of metabotropic glutamate receptor signaling. A notable discovery is that structural variations in non-coding genomic (intronic/intergenic) regions show prediction weights that can be as high as prediction weight from variations in coding regions, results that were unexpected.  相似文献   
42.

Background

The current study aims at evaluating the analgesic, anti-pyretic and anti-inflammatory properties of methanolic extract of the stem, bark and leaves of Launaea sarmentosa and Aegialitis rotundifolia roxb.

Results

The AELS and AEAR extract presented a significant (***p < 0.001) dose dependent increase in reaction time in writhing method and showed inhibition of 63.1% and 57.1% respectively at the doses of 400 mg/kg body weight while standard drug showed (P < 0.001) inhibition of 69.23%. In tail immersion method, AELS and AEAR showed maximum time of tail retention at 30 min in hot water i.e. 6.93 sec and 6.54 sec respectively at highest doses of 400 mg/kg body weight than lower dose while standard pentazocine showed reaction time of 7.62 sec. The AELS and AEAR extract also exhibited promising anti-inflammatory effect as demonstrated by statistically significant inhibition of paw volume by 32.48% and 26.75% respectively at the dose of 400 mg/kg body weight while the value at the dose of 200 mg/kg body weight were linear to higher dose at the 3rd hour of study. On the other hand, Standard indomethacin inhibited 40.13% of inflammation (***P < 0.001). In Cotton-pellet granuloma method, AELS and AEAR extract at the dose of 400 mg/kg body weight exhibited inhibition of inflammation of 34.7% and 29.1% respectively while standard drug showed (P < 0.001) inhibition of 63.22%. Intraperitoneal administration of AELS and AEAR showed dose dependent decrease in body temperature in brewer’s yeast induced hyperthermia in rats at both doses. However, AELS significantly decreased body temperature (***p < 0.001) at 400 mg/kg compared to control.

Conclusions

Present work propose that the methanolic extract of Launaea sarmentosa and Aegialitis rotundifolia roxb possesses dose dependent pharmacological action which supports its therapeutic use in folk medicine possibly mediated through the inhibition or blocking of release of prostaglandin and/or actions of vasoactive substances such as histamine, serotonin and kinins.  相似文献   
43.
Insulin-like growth factor receptor (IGF-1R) is a growth factor receptor tyrosine kinase that acts as a critical mediator of cell proliferation and survival. Inhibitors of this receptor are believed to provide a new target in cancer therapy. We previously reported an isoquinolinedione series of IGF-1R inhibitors. Now we have identified a series of 3-cyanoquinoline compounds that are low nanomolar inhibitors of IGF-1R. The strategies, synthesis, and SAR behind the cyanoquinoline scaffold will be discussed.  相似文献   
44.
The biomass productivity of the energy willow Salix viminalis as a short-rotation woody crop depends on organ structure and functions that are under the control of genome size. Colchicine treatment of axillary buds resulted in a set of autotetraploid S. viminalis var. Energo genotypes (polyploid Energo [PP-E]; 2n = 4x = 76) with variation in the green pixel-based shoot surface area. In cases where increased shoot biomass was observed, it was primarily derived from larger leaf size and wider stem diameter. Autotetraploidy slowed primary growth and increased shoot diameter (a parameter of secondary growth). The duplicated genome size enlarged bark and wood layers in twigs sampled in the field. The PP-E plants developed wider leaves with thicker midrib and enlarged palisade parenchyma cells. Autotetraploid leaves contained significantly increased amounts of active gibberellins, cytokinins, salicylic acid, and jasmonate compared with diploid individuals. Greater net photosynthetic CO2 uptake was detected in leaves of PP-E plants with increased chlorophyll and carotenoid contents. Improved photosynthetic functions in tetraploids were also shown by more efficient electron transport rates of photosystems I and II. Autotetraploidization increased the biomass of the root system of PP-E plants relative to diploids. Sections of tetraploid roots showed thickening with enlarged cortex cells. Elevated amounts of indole acetic acid, active cytokinins, active gibberellin, and salicylic acid were detected in the root tips of these plants. The presented variation in traits of tetraploid willow genotypes provides a basis to use autopolyploidization as a chromosome engineering technique to alter the organ development of energy plants in order to improve biomass productivity.Energy security and climate change as global problems urge increased efforts to use plants as renewable energy sources both for power generation and transportation fuel production. Selected wood species, such as willows (Salix spp.), can be cultivated as short-rotation coppice for the rapid accumulation of biomass and reduction of CO2 emission. Coppicing reinvigorates shoot growth, resulting in a special woody plant life cycle that differs from natural tree development, which takes decades. In this cultivation system, small stem cuttings are planted at high densities (15,000–25,000 ha−1). In the soil, these dormant wood cuttings first produce roots and shoots that emerge from reactivated buds. During the first year, the growing shoots mature to woody stems. In the winter, these stems are cut back, and in the following spring, the cut stumps develop multiple shoots. The short-rotation coppice plantations are characterized by a very short, 2- to 3-year rotation, and the most productive varieties can produce up to 15 tons of oven-dried wood per hectare per year (Cunniff and Cerasuolo, 2011). The high-density willow plantations can also be efficiently used for heavy metal or organic phytoremediation, as reviewed by Marmiroli et al. (2011).The biomass productivity of shrub willows is largely dependent on coppicing capability, early vigorous growth, shoot growth rate and final stem height, root system size, photosynthetic efficiency, formation and composition of woody stems, water and nutrient use, as well as abiotic and biotic stress tolerance. Genetic improvement of all these traits can be based on broad natural genetic resources represented by more than 400 species in the genus Salix. More than 200 species have hybrid origins, and ploidy levels vary from diploid up to dodecaploid (Suda and Argus, 1968; Newsholme, 1992). In addition to molecular marker-assisted clone selection, intraspecific and interspecific crosses have been shown to further extend genetic variability in breeding programs for biomass yield (Karp et al., 2011).During natural diversification and artificial crossings of Salix spp., the willow genomes frequently undergo polyploidization, resulting in triploid or tetraploid allopolyploids. In triploid hybrids, both heterosis and ploidy can contribute to the improved biomass yield (Serapiglia et al., 2014). While the alloploid triploids have attracted considerable attention in willow improvement, the potentials of autotetraploid willow genotypes have not been exploited so far. As shown for other short-rotation wood species (poplar [Populus spp.], black locust [Robinia pseudoacacia], Paulownia spp., and birch [Betula spp.]), doubling the chromosome set by colchicine treatment can cause significant changes in organ morphology or growth parameters (Tang et al., 2010; Cai and Kang, 2011; Harbard et al., 2012; Mu et al., 2012; Wang et al., 2013a, 2013b). In several polyploidization protocols, the in vitro cultured tissues are exposed to different doses of colchicine or other inhibitors of mitotic microtubule function, and plantlets are differentiated from polyploid somatic cells (Tang et al., 2010; Cai and Kang, 2011). Alternatively, seeds or apical meristems of germinating seedlings can be treated with a colchicine solution (Harbard et al., 2012). Allotetraploids of poplar were produced by zygotic chromosome doubling that was induced by colchicine and high-temperature treatment (Wang et al., 2013a).Since tetraploid willow plants with 2n = 4x = 76 chromosomes are expected to represent novel genetic variability, especially for organ development and physiological parameters, a polyploidization project was initiated that was based on a highly productive diploid energy willow (S. viminalis var. Energo). Colchicine treatment of reactivated axillary buds of the in vitro-grown energy willow plantlets resulted in autotetraploid shoots and, subsequently, plants. For comparison of diploid and tetraploid variants of willow plants, digital imaging of green organs and roots was used for phenotyping. Among the tetraploid lines, genotypes were identified with improved biomass production, better photosynthetic parameters, and altered organ structure and hormone composition. The new tetraploid willow variants produced can serve as a unique experimental material to uncover key factors in biomass production in this short-rotation energy plant. In the future, these plants can also serve as crossing partners of diploid lines for the production of novel triploid energy willow genotypes.  相似文献   
45.
The R-type lipopolysaccharides of Neisseria meningitidis   总被引:14,自引:0,他引:14  
The lipopolysaccharides of all the different serogroups of Neisseria meningitidis are of the "R" type despite the morphologically smooth appearance and the demonstrated virulence of the organisms from which they were derived. This was confirmed when each of the lipopolysaccharides was found to be devoid of detectable O-antigen side chains, giving only a low "molecular" weight core oligosaccharide when subjected to mild acid hydrolysis. The cores were modified by dephosphorylation and subjected to sugar and methylation analysis by gas-liquid chromatography. Although all the different cores contained identical components (glucose, galactose, glucosamine, heptose, and 2-keto-3-deoxyoctonate) they could be separated into three distinct categories according to their galactose:glucose ratios. These categories are typified by the cores obtained from groups A, C, and 29-e which have galactose:glucose ratios of 1:2, 2:2, and 2:1, respectively. The modified cores were methylated and analyzed by gas chromatography--mass spectrometry and on the basis of differences in the derived methylated sugars the cores could again be divided into the same three categories as above. This structural diversity also results in some serological specificity as demonstrated by the complete serogroup specificity of the group A lipopolysaccharide.  相似文献   
46.
There is great scientific and popular interest in understanding the genetic history of populations in the Americas. We wish to understand when different regions of the continent were inhabited, where settlers came from, and how current inhabitants relate genetically to earlier populations. Recent studies unraveled parts of the genetic history of the continent using genotyping arrays and uniparental markers. The 1000 Genomes Project provides a unique opportunity for improving our understanding of population genetic history by providing over a hundred sequenced low coverage genomes and exomes from Colombian (CLM), Mexican-American (MXL), and Puerto Rican (PUR) populations. Here, we explore the genomic contributions of African, European, and especially Native American ancestry to these populations. Estimated Native American ancestry is in MXL, in CLM, and in PUR. Native American ancestry in PUR is most closely related to populations surrounding the Orinoco River basin, confirming the Southern America ancestry of the Taíno people of the Caribbean. We present new methods to estimate the allele frequencies in the Native American fraction of the populations, and model their distribution using a demographic model for three ancestral Native American populations. These ancestral populations likely split in close succession: the most likely scenario, based on a peopling of the Americas thousand years ago (kya), supports that the MXL Ancestors split kya, with a subsequent split of the ancestors to CLM and PUR kya. The model also features effective populations of in Mexico, in Colombia, and in Puerto Rico. Modeling Identity-by-descent (IBD) and ancestry tract length, we show that post-contact populations also differ markedly in their effective sizes and migration patterns, with Puerto Rico showing the smallest effective size and the earlier migration from Europe. Finally, we compare IBD and ancestry assignments to find evidence for relatedness among European founders to the three populations.  相似文献   
47.
48.

Background

Persons with Chronic Obstructive Pulmonary Disease (COPD), performing some level of regular physical activity, have a lower risk of both COPD-related hospital admissions and mortality. COPD patients of all stages seem to benefit from exercise training programs, thereby improving with respect to both exercise tolerance and symptoms of dyspnea and fatigue. Physical inactivity, which becomes more severe with increasing age, is a point of concern in healthy older adults. COPD might worsen this scenario, but it is unclear to what degree. This literature review aims to present the extent of the impact of COPD on objectively-measured daily physical activity (DPA). The focus is on the extent of the impact that COPD has on duration, intensity, and counts of DPA, as well as whether the severity of the disease has an additional influence on DPA.

Results

A literature review was performed in the databases PubMed [MEDLINE], Picarta, PEDRO, ISI Web of Knowledge and Google scholar. After screening, 11 studies were identified as being relevant for comparison between COPD patients and healthy controls with respect to duration, intensity, and counts of DPA. Four more studies were found to be relevant to address the subject of the influence the severity of the disease may have on DPA. The average percentage of DPA of COPD patients vs. healthy control subjects for duration was 57%, for intensity 75%, and for activity counts 56%. Correlations of DPA and severity of the disease were low and/or not significant.

Conclusions

From the results of this review, it appears that patients with COPD have a significantly reduced duration, intensity, and counts of DPA when compared to healthy control subjects. The intensity of DPA seems to be less affected by COPD than duration and counts. Judging from the results, it seems that severity of COPD is not strongly correlated with level of DPA. Future research should focus in more detail on the relation between COPD and duration, intensity, and counts of DPA, as well as the effect of disease severity on DPA, so that these relations become more understandable.  相似文献   
49.
Although protein-tyrosine phosphatase 1B (PTP-1B) is a negative regulator of insulin action, adipose tissue from PTP-1B-/- mice does not show enhanced insulin-stimulated insulin receptor phosphorylation. Investigation of glucose uptake in isolated adipocytes revealed that the adipocytes from PTP-1B-/- mice have a significantly attenuated insulin response as compared with PTP-1B+/+ adipocytes. This insulin resistance manifests in PTP-1B-/- animals older than 16 weeks of age and could be partially rescued by adenoviral expression of PTP-1B in null adipocytes. Examination of adipose signaling pathways found that the basal p70S6K activity was at least 50% higher in adipose from PTP-1B-/- mice compared with wild type animals. The increased basal activity of p70S6K in PTP-1B-/- adipose correlated with decreases in IR substrate-1 protein levels and insulin-stimulated Akt/protein kinase B activity, explaining the decrease in insulin sensitivity even as insulin receptor phosphorylation was unaffected. The insulin resistance of the of the PTP-1B-/- adipocytes could also be rescued by treatment with rapamycin, suggesting that in adipose the loss of PTP-1B results in basal activation of mTOR (mammalian target of rapamycin) complex 1 leading to a tissue-specific insulin resistance.  相似文献   
50.
The aim of this study was to examine the effects of Eleutherococcus senticosus (ES) supplementation on endurance capacity, cardiovascular functions and metabolism of recreationally trained males for 8 weeks. Nine recreationally trained males in college consumed 800 mg/d of ES or starch placebo (P) for 8 weeks according to a double-blind, randomized, placebo controlled and crossover design with a washout period of 4 weeks between the cycling trials. Subjects cycled at 75% VO2 peak until exhaustion. The examined physiological variables included endurance time, maximal heart rate during exhaustion exercise, VO2, rating of perceived exertion and respiratory exchange ratio. The biochemical variables including the plasma free fatty acid (FFA) and glucose were measured at rest, 15 min, 30 min and exhaustion. The major finding of this study was the VO2 peak of the subjects elevated 12% (P < 0.05), endurance time improved 23% (P < 0.05) and the highest heart rate increased 4% (P < 0.05) significantly. The second finding was at 30 min of 75% VO2 peak cycling, the production of plasma FFA was increased and the glucose level was decreased both significantly (P < 0.05) over 8-week ES supplementation. This is the first well-conducted study that shows that 8-week ES supplementation enhances endurance capacity, elevates cardiovascular functions and alters the metabolism for sparing glycogen in recreationally trained males.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号