首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   835篇
  免费   105篇
  940篇
  2023年   5篇
  2022年   14篇
  2021年   25篇
  2020年   7篇
  2019年   25篇
  2018年   17篇
  2017年   13篇
  2016年   21篇
  2015年   47篇
  2014年   37篇
  2013年   42篇
  2012年   70篇
  2011年   59篇
  2010年   25篇
  2009年   38篇
  2008年   45篇
  2007年   38篇
  2006年   25篇
  2005年   23篇
  2004年   25篇
  2003年   27篇
  2002年   17篇
  2001年   12篇
  2000年   8篇
  1999年   14篇
  1998年   5篇
  1997年   7篇
  1996年   9篇
  1994年   7篇
  1993年   5篇
  1992年   12篇
  1991年   7篇
  1990年   15篇
  1989年   7篇
  1988年   15篇
  1987年   10篇
  1986年   11篇
  1985年   15篇
  1984年   7篇
  1983年   9篇
  1981年   5篇
  1980年   5篇
  1979年   12篇
  1978年   10篇
  1976年   9篇
  1975年   6篇
  1974年   8篇
  1970年   10篇
  1969年   5篇
  1968年   9篇
排序方式: 共有940条查询结果,搜索用时 0 毫秒
41.
Many sequence variations of the 8–17 RNA-cleaving deoxyribozyme have been isolated through in vitro selection. In an effort to understand how these sequence variations affect cleavage site selectivity, we systematically mutated the catalytic core of 8–17 and measured the cleavage activity of each mutant deoxyribozyme against all 16 possible chimeric (RNA/DNA) dinucleotide junctions. We observed sequence-function relationships that suggest how the following non-conserved positions in the catalytic core influence selectivity at the dinucleotide (5′ rN18-N1.1 3′) cleavage site: (i) positions 2.1 and 12 represent a primary determinant of the selectivity at the 3′ position (N1.1) of the cleavage site; (ii) positions 15 and 15.0 represent a primary determinant of the selectivity at the 5′ position (rN18) of the cleavage site and (iii) the sequence of the 3-bp intramolecular stem has relatively little influence on cleavage site selectivity. Furthermore, we report for the first time that 8–17 variants have the collective ability to cleave all dinucleotide junctions with rate enhancements of at least 1000-fold over background. Three optimal 8–17 variants, identified from ~75 different sequences that were examined, can collectively cleave 10 of 16 junctions with useful rates of 0.1 min−1, and exhibit an overall hierarchy of reactivity towards groups of related junctions according to the order NG > NA > NC > NT.  相似文献   
42.
The interferon-inducible, double-stranded (ds)RNA-dependent protein kinase (PKR) plays a major role in antiviral defense mechanisms where it down-regulates translation via phosphorylation of eukaryotic translation initiation factor 2alpha. PKR is also involved in the activation of nuclear factor kappaB (NFkappaB) through activation of the IkappaB kinase complex. Activation of PKR can occur in the absence of dsRNA and in such case is controlled by intracellular regulators like the PKR-activating protein (PACT), the PKR inhibitor p58(IPK), or heat-shock proteins (Hsp). These regulators are activated by stress stimuli, supporting a role for PKR in response to stress; however the final outcome of PKR activation in stress situations is unclear. We present here evidence that expression and activation of PKR contributes to an increased cellular resistance to mercury cytotoxicity. In two cell lines constitutively expressing PKR (THP-1 and Molt-3), treatment with the PKR inhibitor 2-aminopurine increases their sensitivity to mercury. In contrast, Ramos cells, which do not constitutively express PKR, present an increased resistance to mercury when PKR expression is induced by polyIC or interferon-beta treatment. This protective effect is inhibited by 2-aminopurine. We also show that exposure of Ramos cells to mercury leads to the induction of Hsp70. Treatment of cells with Hsp70 or NFkappaB inhibitors suppresses the PKR-dependent protection. We propose a model where PKR, modulated by Hsp70, activates a NFkappaB-mediated protective pathway. Because the cytotoxicity of mercury is primarily due to the generation of reactive oxygen species, our results suggest a more general function of PKR in the mechanisms of cellular response to oxidative stress.  相似文献   
43.
The biomass productivity of the energy willow Salix viminalis as a short-rotation woody crop depends on organ structure and functions that are under the control of genome size. Colchicine treatment of axillary buds resulted in a set of autotetraploid S. viminalis var. Energo genotypes (polyploid Energo [PP-E]; 2n = 4x = 76) with variation in the green pixel-based shoot surface area. In cases where increased shoot biomass was observed, it was primarily derived from larger leaf size and wider stem diameter. Autotetraploidy slowed primary growth and increased shoot diameter (a parameter of secondary growth). The duplicated genome size enlarged bark and wood layers in twigs sampled in the field. The PP-E plants developed wider leaves with thicker midrib and enlarged palisade parenchyma cells. Autotetraploid leaves contained significantly increased amounts of active gibberellins, cytokinins, salicylic acid, and jasmonate compared with diploid individuals. Greater net photosynthetic CO2 uptake was detected in leaves of PP-E plants with increased chlorophyll and carotenoid contents. Improved photosynthetic functions in tetraploids were also shown by more efficient electron transport rates of photosystems I and II. Autotetraploidization increased the biomass of the root system of PP-E plants relative to diploids. Sections of tetraploid roots showed thickening with enlarged cortex cells. Elevated amounts of indole acetic acid, active cytokinins, active gibberellin, and salicylic acid were detected in the root tips of these plants. The presented variation in traits of tetraploid willow genotypes provides a basis to use autopolyploidization as a chromosome engineering technique to alter the organ development of energy plants in order to improve biomass productivity.Energy security and climate change as global problems urge increased efforts to use plants as renewable energy sources both for power generation and transportation fuel production. Selected wood species, such as willows (Salix spp.), can be cultivated as short-rotation coppice for the rapid accumulation of biomass and reduction of CO2 emission. Coppicing reinvigorates shoot growth, resulting in a special woody plant life cycle that differs from natural tree development, which takes decades. In this cultivation system, small stem cuttings are planted at high densities (15,000–25,000 ha−1). In the soil, these dormant wood cuttings first produce roots and shoots that emerge from reactivated buds. During the first year, the growing shoots mature to woody stems. In the winter, these stems are cut back, and in the following spring, the cut stumps develop multiple shoots. The short-rotation coppice plantations are characterized by a very short, 2- to 3-year rotation, and the most productive varieties can produce up to 15 tons of oven-dried wood per hectare per year (Cunniff and Cerasuolo, 2011). The high-density willow plantations can also be efficiently used for heavy metal or organic phytoremediation, as reviewed by Marmiroli et al. (2011).The biomass productivity of shrub willows is largely dependent on coppicing capability, early vigorous growth, shoot growth rate and final stem height, root system size, photosynthetic efficiency, formation and composition of woody stems, water and nutrient use, as well as abiotic and biotic stress tolerance. Genetic improvement of all these traits can be based on broad natural genetic resources represented by more than 400 species in the genus Salix. More than 200 species have hybrid origins, and ploidy levels vary from diploid up to dodecaploid (Suda and Argus, 1968; Newsholme, 1992). In addition to molecular marker-assisted clone selection, intraspecific and interspecific crosses have been shown to further extend genetic variability in breeding programs for biomass yield (Karp et al., 2011).During natural diversification and artificial crossings of Salix spp., the willow genomes frequently undergo polyploidization, resulting in triploid or tetraploid allopolyploids. In triploid hybrids, both heterosis and ploidy can contribute to the improved biomass yield (Serapiglia et al., 2014). While the alloploid triploids have attracted considerable attention in willow improvement, the potentials of autotetraploid willow genotypes have not been exploited so far. As shown for other short-rotation wood species (poplar [Populus spp.], black locust [Robinia pseudoacacia], Paulownia spp., and birch [Betula spp.]), doubling the chromosome set by colchicine treatment can cause significant changes in organ morphology or growth parameters (Tang et al., 2010; Cai and Kang, 2011; Harbard et al., 2012; Mu et al., 2012; Wang et al., 2013a, 2013b). In several polyploidization protocols, the in vitro cultured tissues are exposed to different doses of colchicine or other inhibitors of mitotic microtubule function, and plantlets are differentiated from polyploid somatic cells (Tang et al., 2010; Cai and Kang, 2011). Alternatively, seeds or apical meristems of germinating seedlings can be treated with a colchicine solution (Harbard et al., 2012). Allotetraploids of poplar were produced by zygotic chromosome doubling that was induced by colchicine and high-temperature treatment (Wang et al., 2013a).Since tetraploid willow plants with 2n = 4x = 76 chromosomes are expected to represent novel genetic variability, especially for organ development and physiological parameters, a polyploidization project was initiated that was based on a highly productive diploid energy willow (S. viminalis var. Energo). Colchicine treatment of reactivated axillary buds of the in vitro-grown energy willow plantlets resulted in autotetraploid shoots and, subsequently, plants. For comparison of diploid and tetraploid variants of willow plants, digital imaging of green organs and roots was used for phenotyping. Among the tetraploid lines, genotypes were identified with improved biomass production, better photosynthetic parameters, and altered organ structure and hormone composition. The new tetraploid willow variants produced can serve as a unique experimental material to uncover key factors in biomass production in this short-rotation energy plant. In the future, these plants can also serve as crossing partners of diploid lines for the production of novel triploid energy willow genotypes.  相似文献   
44.
A comprehensive survey of 11 peptidases, all of which are markers for renal microvillar membranes, has been made in membrane fractions prepared from pig choroid plexus. Two fractionation schemes were explored, both depending on a MgCl2-precipitation step, the preferred one having advantages in speed and yield of the activities. The specific activities of the peptidases in the choroid-plexus membranes were, with the exception of carboxypeptidase M, lower than in renal microvillar membranes: those of aminopeptidase N, peptidyl dipeptidase A ('angiotensin-converting enzyme') and gamma-glutamyltransferase were 3-5-fold lower, those of aminopeptidase A and endopeptidase-24.11 were 12-15 fold lower, and those of dipeptidyl peptidase IV and aminopeptidase W were 50-70-fold lower. Carboxypeptidase M had a similar activity in both membranes. Alkaline phosphatase and (Na+ + K+)-activated ATPase were more active in the choroid-plexus membranes. No activity for microsomal dipeptidase, aminopeptidase P and carboxypeptidase P could be detected. Six of the peptidases and (Na+ + K+)-activated ATPase were also studied by immunoperoxidase histochemistry at light- and electron-microscopic levels. Endopeptidase-24.11 and (Na+ + K+)-activated ATPase were uniquely located on the brush border, and the other two peptidases appeared to be much more abundant on the endothelial lining of microvessels. Dipeptidyl peptidase IV and aminopeptidase W were also detected in microvasculature. Pial membranes associated with the brain and spinal cord also stained positively for endopeptidase-24.11, aminopeptidase N and peptidyl dipeptidase A. The immunohistochemical studies indicated the subcellular fractionation did not discriminate between membranes derived from epithelial cells (i.e. microvilli) and those from endothelial cells. The possible significance of these studies in relation to neuropeptide metabolism and the control of cerebrospinal fluid production is discussed.  相似文献   
45.
46.
47.
N-Methylformamide extracts of acid-treated precipitated VFe protein of the V-nitrogenase of Azotobacter chroococcum are yellow-brown in colour and contain vanadium, iron and acid-labile sulphur in the approximate proportions 1:6:5. E.p.r. spectra of the extracts exhibit a weak signal with g values near 4.5, 3.6 and 2.0 characteristic of an S = 3/2 metal-containing centre. The N-methylformamide extracts activated the MoFe protein polypeptides from mutants of nitrogen-fixing bacteria unable to synthesize FeMoco, the active centre of Mo-nitrogenase. The active hybrid protein exhibited the characteristic substrate-reducing phenotype associated with the VFe protein except that it could not reduce N2 to NH3. The above data are interpreted as demonstrating the existence of an iron- and vanadium-containing cofactor, FeVaco, within the VFe protein. It is suggested that nitrogen fixation requires specific interactions between FeVaco or FeMoco and their respective polypeptides. The biosynthesis of these cofactors is discussed.  相似文献   
48.
How does time‐since‐fire influence the structural recovery of semi‐arid, eucalypt‐dominated Murray‐Mallee shrublands after fire, and is recovery affected by spatial variation in climate? We assessed the structure and dynamics of a hummock grass, Triodia scariosa N.T. Burb, and mallee eucalypts – two key structural components of mallee shrublands – using a >100 year time‐since‐fire chronosequence. The relative influence of climatic variables, both individually and combined with time‐since‐fire, was modelled to account for spatial variation in the recovery of vegetation structural components. Time‐since‐fire was the primary determinant of the structural recovery of T. scariosa and eucalypts. However, climate, notably mean annual rainfall and rainfall variability, also influenced the recovery of the eucalypt overstorey, T. scariosa cover and mean hummock height. We observed that (i) the mean number of live eucalypt stems per individual decreased while mean individual basal area increased, (ii) cover of T. scariosa peaked at ~30 years post‐fire and gradually decreased thereafter, and (iii) the ‘hummock’ form of T. scariosa occurred throughout the chronosequence, whereas the ‘ring’ form tended not to occur until ~30 years post‐fire. Time‐since‐fire was the key determinant of the structural recovery of eucalypt‐dominated mallee shrublands, but there is geographical variation in recovery related to rainfall and its variability. Fire regimes are likely to have different effects across the geographic range of mallee shrublands.  相似文献   
49.
A process for the conversion of post consumer (agricultural) polyethylene (PE) waste to the biodegradable polymer medium chain length polyhydroxyalkanoate (mcl-PHA) is reported here. The thermal treatment of PE in the absence of air (pyrolysis) generated a complex mixture of low molecular weight paraffins with carbon chain lengths from C8 to C32 (PE pyrolysis wax). Several bacterial strains were able to grow and produce PHA from this PE pyrolysis wax. The addition of biosurfactant (rhamnolipids) allowed for greater bacterial growth and PHA accumulation of the tested strains. Some strains were only capable of growth and PHA accumulation in the presence of the biosurfactant. Pseudomonas aeruginosa PAO-1 accumulated the highest level of PHA with almost 25 % of the cell dry weight as PHA when supplied with the PE pyrolysis wax in the presence of rhamnolipids. The change of nitrogen source from ammonium chloride to ammonium nitrate resulted in faster bacterial growth and the earlier onset of PHA accumulation. To our knowledge, this is the first report where PE is used as a starting material for production of a biodegradable polymer.  相似文献   
50.
We have examined the requirement for major histocompatibility complex (MHC)-restricted T-cell help in the secondary in vivo antibody response to phosphocholine (PC). The memory response to PC has been demonstrated previously to be comprised of T15-dominant IgM and IgG3 plaque-forming cells (PFC) derived primarily from the Lyb-5+ B-cell subset, and IgG1 and IgG2 PFC, few of which bear the T15 idiotype and are predominantly derived from the Lyb-5- B-cell subset. Using carrier-primed (A X B)F1 T cells which have matured in a parentA chimeric environment so that "self" recognition is of the MHC determinants of parentA but not parentB, we have found that parentA PC-primed B cells, but not parentB PC-primed B cells, are activated. Even in the presence of an ongoing parentA anti-PC response, parentB PC-primed B cells were not activated, indicating that the restriction was between the helper T cell and the B cell, not between T-helper and accessory cells. MHC-restricted T-cell help was required by B cells producing T15+ and T15- IgM, IgG3, IgG1, and IgG2 responses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号