首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20567篇
  免费   2413篇
  国内免费   6篇
  22986篇
  2022年   125篇
  2021年   258篇
  2020年   147篇
  2019年   188篇
  2018年   250篇
  2017年   213篇
  2016年   373篇
  2015年   607篇
  2014年   685篇
  2013年   847篇
  2012年   1146篇
  2011年   1084篇
  2010年   730篇
  2009年   658篇
  2008年   1017篇
  2007年   1029篇
  2006年   936篇
  2005年   988篇
  2004年   939篇
  2003年   918篇
  2002年   898篇
  2001年   391篇
  2000年   372篇
  1999年   364篇
  1998年   324篇
  1997年   237篇
  1996年   224篇
  1995年   244篇
  1994年   244篇
  1993年   224篇
  1992年   307篇
  1991年   264篇
  1990年   286篇
  1989年   302篇
  1988年   410篇
  1987年   277篇
  1986年   222篇
  1985年   266篇
  1984年   270篇
  1983年   231篇
  1982年   227篇
  1981年   225篇
  1980年   241篇
  1979年   188篇
  1978年   197篇
  1977年   196篇
  1976年   153篇
  1975年   154篇
  1974年   187篇
  1973年   170篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
Muscle insulin resistance develops when plasma free fatty acids (FFAs) are acutely increased to supraphysiological levels (approximately 1,500-4,000 micromol/l). However, plasma FFA levels >1,000 micromol/l are rarely observed in humans under usual living conditions, and it is unknown whether insulin action may be impaired during a sustained but physiological FFA increase to levels seen in obesity and type 2 diabetes mellitus (T2DM) (approximately 600-800 micromol/l). It is also unclear whether normal glucose-tolerant subjects with a strong family history of T2DM (FH+) would respond to a low-dose lipid infusion as individuals without any family history of T2DM (CON). To examine these questions, we studied 7 FH+ and 10 CON subjects in whom we infused saline (SAL) or low-dose Liposyn (LIP) for 4 days. On day 4, a euglycemic insulin clamp with [3-3H]glucose and indirect calorimetry was performed to assess glucose turnover, combined with vastus lateralis muscle biopsies to examine insulin signaling. LIP increased plasma FFA approximately 1.5-fold, to levels seen in T2DM. Compared with CON, FH+ were markedly insulin resistant and had severely impaired insulin signaling in response to insulin stimulation. LIP in CON reduced insulin-stimulated glucose disposal (Rd) by 25%, insulin-stimulated insulin receptor tyrosine phosphorylation by 17%, phosphatidylinositol 3-kinase activity associated with insulin receptor substrate-1 by 20%, and insulin-stimulated glycogen synthase fractional velocity over baseline (44 vs. 15%; all P < 0.05). In contrast to CON, a physiological elevation in plasma FFA in FH+ led to no further deterioration in Rd or to any additional impairment of insulin signaling. In conclusion, a 4-day physiological increase in plasma FFA to levels seen in obesity and T2DM impairs insulin action/insulin signaling in CON but does not worsen insulin resistance in FH+. Whether this lack of additional deterioration in insulin signaling in FH+ is due to already well-established lipotoxicity, or to other molecular mechanisms related to insulin resistance that are nearly maximally expressed early in life, remains to be determined.  相似文献   
962.
Abstract Extractable cell membrane-derived polarlipid ester-linked fatty acids (PLFA) obtained from aerated soils gassed with methane or propane and from methane- and propane-oxidizing bacteria isolated from the soils were analyzed by capillary gas chromatography/mass spectrometry. Exposure of aerated soils to methane resulted in the formation of a high proportion of an unusual 18-carbon mono-unsaturated PLFA, 18:lw8c. High proportions of this fatty acid biomarker are found in monocultures from this soil grown in minimal media with methane. This PLFA has been previously established as associated with authentic type II methane-oxidizing bacteria. The microbiota in aerated soils exposed to hydrocarbons containing propane, formed a suite of PLFA characterized by high proportions of a 16-carbon mono-unsaturated acid, 16:lw6c, and an 18-carbon saturated fatty acid with an additional methyl branch at the 10 position, 10 Me 18:0. This PLFA pattern has been detected in several monocultures enriched from the soil with propane-amended minimal media. The correspondence of high proportions of these unusual mono-unsaturated PLFA in the isolated monocultures and in situ in the soils after stimulation with the appropriate hydrocarbon is a strong validation of the utility of these biomarkers in defining the community structure of the surface soil microbial community.  相似文献   
963.
Cancer cachexia is a polygenic and complex syndrome. Genetic variations in regulation of the inflammatory response, muscle and fat metabolic pathways, and pathways in appetite regulation are likely to contribute to the susceptibility or resistance to developing cancer cachexia. A systematic search of Medline and EmBase databases, covering 1986–2008 was performed for potential candidate genes/genetic polymorphisms relating to cancer cachexia. Related genes were then identified using pathway functional analysis software. All candidate genes were reviewed for functional polymorphisms or clinically significant polymorphisms associated with cachexia using the OMIM and GeneRIF databases. Genes with variants which had functional or clinical associations with cachexia and replicated in at least one study were entered into pathway analysis software to reveal possible network associations between genes. A total of 184 polymorphisms with functional or clinical relevance to cancer cachexia were identified in 92 candidate genes. Of these, 42 polymorphisms (in 33 genes) were replicated in more than one study with 13 polymorphisms found to influence two or more hallmarks of cachexia (i.e. inflammation, loss of fat mass and/or lean mass and reduced survival). Thirty-three genes were found to be significantly interconnected in two major networks with four genes (ADIPOQ, IL6, NFKB1 and TLR4) interlinking both networks. Selection of candidate genes and polymorphisms is a key element of multigene study design. The present study provides an initial framework to select genes/ polymorphisms for further study in cancer cachexia, and to develop their potential as susceptibility biomarkers of developing cachexia.  相似文献   
964.

Premise

Oceanic islands offer the opportunity to understand evolutionary processes underlying rapid diversification. Along with geographic isolation and ecological shifts, a growing body of genomic evidence has suggested that hybridization can play an important role in island evolution. Here we use genotyping-by-sequencing (GBS) to understand the roles of hybridization, ecology, and geographic isolation in the radiation of Canary Island Descurainia (Brassicaceae).

Methods

We carried out GBS for multiple individuals of all Canary Island species and two outgroups. Phylogenetic analyses of the GBS data were performed using both supermatrix and gene tree approaches and hybridization events were examined using D-statistics and Approximate Bayesian Computation. Climatic data were analyzed to examine the relationship between ecology and diversification.

Results

Analysis of the supermatrix data set resulted in a fully resolved phylogeny. Species networks suggest a hybridization event has occurred for D. gilva, with these results being supported by Approximate Bayesian Computation analysis. Strong phylogenetic signals for temperature and precipitation indicate one major ecological shift within Canary Island Descurainia.

Conclusions

Inter-island dispersal played a significant role in the diversification of Descurainia, with evidence of only one major shift in climate preferences. Despite weak reproductive barriers and the occurrence of hybrids, hybridization appears to have played only a limited role in the diversification of the group with a single instance detected. The results highlight the need to use phylogenetic network approaches that can simultaneously accommodate incomplete lineage sorting and gene flow when studying groups prone to hybridization; patterns that might otherwise be obscured in species trees.  相似文献   
965.
Despite recent advances in understanding store-operated calcium entry (SOCE) regulation, the fundamental question of how ER morphology affects this process remains unanswered. Here we show that the loss of RTN4, is sufficient to alter ER morphology and severely compromise SOCE. Mechanistically, we show this to be the result of defective STIM1-Orai1 coupling because of loss of ER tubulation and redistribution of STIM1 to ER sheets. As a functional consequence, RTN4-depleted cells fail to sustain elevated cytoplasmic Ca2+ levels via SOCE and therefor are less susceptible to Ca2+ overload induced apoptosis. Thus, for the first time, our results show a direct correlation between ER morphology and SOCE and highlight the importance of RTN4 in cellular Ca2+ homeostasis.  相似文献   
966.
In adult rats, a significant portion of brain ethanolamine glycerophospholipids are synthesized by a pathway involving phosphatidylserine decarboxylase, a mitochondrial enzyme. We have now examined whether this enzyme plays a particularly prominent role during development. Activities for both phosphatidylserine decarboxylase and succinate dehydrogenase (another mitochondrial enzyme) were determined in brain homogenates from rats 5 days of age to adulthood. Succinate dehydrogenase activity, expressed on a per unit brain protein basis, increased markedly during development. This pattern has been reported previously and is as expected from the postnatal increase in oxidative metabolism. In contrast, phosphatidylserine decarboxylase activity decreased 40% from 5 to 30 days of age. The apparent Km for brain phosphatidylserine decarboxylase was 85 microM in both young (8- and 20-day-old) and adult animals. Parallel studies in vivo were carried out to determine the contribution of the phosphatidylserine decarboxylase pathway, relative to pathways utilizing ethanolamine directly, to the synthesis of brain ethanolamine glycerophospholipids. Animals were injected intracranially with a mixture of L-[G-3H]serine and [2-14C]ethanolamine and incorporation into the base moieties of the phospholipids determined. The 3H/14C ratio of ethanolamine glycerophospholipids decreased about 50% during development. Our studies in vitro and in vivo both suggest that phosphatidylserine decarboxylase plays a significant role in the synthesis of brain ethanolamine glycerophospholipids at all ages, although it is relatively more prominent early in development.  相似文献   
967.
Seedlings of pond pine ( Pinus serotina Michx.), sand pine [ P. clausa (Engelm.) Sarg.], and loblolly pine ( P. taeda L., wet-site and drought-hardy seed sources) were grown in hydroponic solution culture using a non-circulating, continuously flowing design under anaerobic or aerobic conditions to determine whether flooding tolerance was correlated with enhanced internal root aeration. Transport of atmospheric O2 from the shoot to the root of anaerobically grown loblolly and pond pine seedlings was demonstrated via rhizosphere oxidation, using both reduced indigo-carmine solution and a polarographic, ensheathing Pt-electrode. Stem and root collar lenticels were the major sites of atmospheric O2 entry for submerged roots in these seedlings. No O2 leakage was detected from roots of aerobically grown pine seedlings. Longitudinal and radial pathways for gaseous diffusion via intercellular air spaces in the pericycle and between ray parenchyma cells, respectively, were demonstrated histo-logically in anaerobically grown loblolly and pond pines. Rhizosphere oxidation, and lenticel and aerenchyma development in roots of flood-intolerant sand pine seedlings grown in anaerobic solutions were minimal. Only 15 days of anaerobic growth conditions were necessary to increase internal root porosities of loblolly and pond pine seedlings – although not to the extent found in seedlings treated for 30 or 75 days. Histological results indicated that root tissue in the secondary stage of growth was capable of forming intercellular air spaces, demonstrating a degree of internal plasticity – at least in the more flood-tolerant loblolly and pond pine seedlings.  相似文献   
968.
The goal of this study is to establish the nature of pentammineruthenium(III) binding to DNA in intact mouse liver nuclei. Also, we wish to determine whether the nucleosomal organization of mouse chromatin has a substantial effect on the relative Ru(III) binding levels of internucleosomal and nucleosomal core DNA. These questions are important because ammineruthenium compounds share chemical and biological properties with the cis-dichlorodiammineplatinum(II) or cisplatin chemotherapeutic agent. Therefore, they represent a potential class of new chemotherapeutic agents. We find that in intact nuclei the predominant DNA binding site for pentammineruthenium(II), followed by air oxidation to pentammineruthenium(III), is N-7 guanine, as is the case with cisplatin. Also, the Ru(III) distribution between internucleosomal and nucleosomal core DNA was found to be nearly identical as probed with three non-specific deoxyribonucleases.  相似文献   
969.
Oxidatively modified autoantigens in autoimmune diseases   总被引:4,自引:0,他引:4  
Free radical-mediated oxidative damage and consequent protein modification by the end products of oxidative damage are important mediators of cell toxicity and disease pathogenesis. Aldehydic products, mainly the 4-hydroxy-2-alkenals, form adducts with proteins and make them highly immunogenic. Oxidative modification of proteins has been shown to elicit antibodies in a variety of diseases including systemic lupus erythematosus (SLE), alcoholic liver disease, diabetes mellitus (DM), and rheumatoid arthritis (RA). Oxidatively modified DNA (8-oxodeoxyguanine) and low-density lipoproteins (LDL) occur in SLE, a disease in which premature atherosclerosis is a serious problem. In addition, immunization with 4-hydroxy-2-nonenal (HNE)-modified 60-kDa Ro autoantigen elicits an accelerated epitope spreading in an animal model of SLE. Advanced glycation end product (AGE) pentosidine and AGE-modified IgG have been shown to correlate with RA disease activity. Oxidatively modified glutamic acid decarboxylase is important in type 1 DM, while autoantibodies against oxidized LDL are prevalent in Behcet's disease. The fragmentation of scleroderma-specific autoantigens occurs as a result of oxidative modification and is thought to be responsible for the production of autoantibodies through the release of cryptic epitopes. In the face of overwhelming evidence for the involvement of oxidative damage in autoimmunity the administration of antioxidants is a viable untried alternative for preventing or ameliorating autoimmune disease, although results in cardiovascular disease are disappointing.  相似文献   
970.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号