首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12073篇
  免费   1072篇
  国内免费   6篇
  2022年   72篇
  2021年   148篇
  2020年   91篇
  2019年   118篇
  2018年   161篇
  2017年   124篇
  2016年   234篇
  2015年   398篇
  2014年   436篇
  2013年   546篇
  2012年   725篇
  2011年   709篇
  2010年   499篇
  2009年   438篇
  2008年   698篇
  2007年   653篇
  2006年   635篇
  2005年   689篇
  2004年   667篇
  2003年   645篇
  2002年   652篇
  2001年   110篇
  2000年   90篇
  1999年   149篇
  1998年   194篇
  1997年   123篇
  1996年   128篇
  1995年   124篇
  1994年   120篇
  1993年   112篇
  1992年   100篇
  1991年   85篇
  1990年   94篇
  1989年   84篇
  1988年   84篇
  1987年   87篇
  1986年   82篇
  1985年   116篇
  1984年   142篇
  1983年   113篇
  1982年   135篇
  1981年   141篇
  1980年   146篇
  1979年   80篇
  1978年   92篇
  1977年   83篇
  1976年   68篇
  1975年   73篇
  1974年   91篇
  1973年   82篇
排序方式: 共有10000条查询结果,搜索用时 359 毫秒
991.
992.
Summary Estimation of abundance is important in both open and closed population capture–recapture analysis, but unmodeled heterogeneity of capture probability leads to negative bias in abundance estimates. This article defines and develops a suite of open population capture–recapture models using finite mixtures to model heterogeneity of capture and survival probabilities. Model comparisons and parameter estimation use likelihood‐based methods. A real example is analyzed, and simulations are used to check the main features of the heterogeneous models, especially the quality of estimation of abundance, survival, recruitment, and turnover. The two major advances in this article are the provision of realistic abundance estimates that take account of heterogenetiy of capture, and an appraisal of the amount of overestimation of survival arising from conditioning on the first capture when heterogeneity of survival is present.  相似文献   
993.
Aberrant repair of DNA double-strand breaks (DSBs) is thought to be important in the generation of gross chromosomal rearrangements (GCRs). To examine how DNA DSBs might lead to GCRs, we investigated the repair of a single DNA DSB in a structurally unstable cell line. An I-SceI recognition site was introduced into OVCAR-8 cells between a constitutive promoter (EF1α) and the Herpes simplex virus thymidine kinase (TK) gene, which confers sensitivity to gancyclovir (GCV). Expression of I-SceI in these cells caused a single DSB. Clones with aberrant repair could acquire resistance to GCV by separation of the EF1α promoter from the TK gene, or deletion of either the EF1α promoter or the TK gene. All mutations that we identified were interstitial deletions. Treatment of cells with etoposide or bleomycin, agents known to produce DNA DSBs following expression of I-SceI also did not generate GCRs. Because we identified solely interstitial deletions using the aforementioned negative selection system, we developed a positive selection system to produce GCR. A construct containing an I-SceI restriction site immediately followed by a hygromycin phosphotransferase cDNA, with no promoter, was stably integrated into OVCAR-8 cells. DNA DSBs were produced by an I-SceI expression vector. None of the hygromycin resistant clones recovered had linked the hygromycin phosphotransferase cDNA to an endogenous promoter, but had instead captured a portion of the I-SceI expression vector. These results indicate that even in a structurally unstable malignant cell line, the majority of DNA DSBs are repaired by religation of the two broken chromosome ends, without the introduction of a GCR.  相似文献   
994.
995.
Systemic acquired resistance (SAR) is a form of defense that provides resistance against a broad spectrum of pathogens in plants. Previous work indicates a role for plastidial glycerolipid biosynthesis in SAR. Specifically, mutations in FATTY ACID DESATURASE7 (FAD7), which lead to reduced trienoic fatty acid levels and compromised plastidial lipid biosynthesis, have been associated with defective SAR. We show that the defective SAR in Arabidopsis (Arabidopsis thaliana) fad7-1 plants is not associated with a mutation in FAD7 but rather with a second-site mutation in GLABRA1 (GL1), a gene well known for its role in trichome formation. The compromised SAR in gl1 plants is associated with impairment in their cuticles. Furthermore, mutations in two other components of trichome development, GL3 and TRANSPARENT TESTA GLABRA1, also impaired cuticle development and SAR. This suggests an overlap in the biochemical pathways leading to cuticle and trichome development. Interestingly, exogenous application of gibberellic acid (GA) not only enhanced SAR in wild-type plants but also restored SAR in gl1 plants. In contrast to GA, the defense phytohoromes salicylic acid and jasmonic acid were unable to restore SAR in gl1 plants. GA application increased levels of cuticular components but not trichome formation on gl1 plants, thus implicating cuticle, but not trichomes, as an important component of SAR. Our findings question the prudence of using mutant backgrounds for genetic screens and underscore a need to reevaluate phenotypes previously studied in the gl1 background.Plants have evolved a large array of defense mechanisms to resist infection by pathogens. Upon recognition, the host plant initiates one or more signal transduction pathways that activate various plant defenses and thereby prevent pathogen colonization. In many cases, resistance is associated with increased expression of defense genes, including the pathogenesis-related (PR) genes and the accumulation of salicylic acid (SA) in the inoculated leaf. Induction of these responses is accompanied by localized cell death at the site of pathogen entry, which can often restrict the spread of pathogen to cells within and immediately surrounding the lesions. This phenomenon, known as the hypersensitive response, is one of the earliest visible manifestations of induced defense responses and resembles programmed cell death in animals (Dangl et al., 1996; Gray, 2002; Glazebrook, 2005; Kachroo and Kachroo, 2006). Concurrent with hypersensitive response development, defense reactions are triggered in sites both local and distal from the primary infection. This phenomenon, known as systemic acquired resistance (SAR), is accompanied by a local and systemic increase in SA and jasmonic acid (JA) and a concomitant up-regulation of a large set of defense genes (Durrant and Dong, 2004; Truman et al., 2007; Vlot et al., 2009).SAR involves the generation of a mobile signal in the primary leaves that, upon translocation to the distal tissues, activates defense responses resulting in broad-spectrum resistance. The production of the mobile signal takes places within 3 to 6 h of avirulent pathogen inoculation in the primary leaves (Smith-Becker et al., 1998), and the inoculated leaf must remain attached for at least 4 h after inoculation for immunity to be induced in the systemic tissues (Rasmussen et al., 1991). Mutations compromising SA synthesis or impairing SA, JA, or auxin signaling abolish SAR (Durrant and Dong, 2004; Truman et al., 2007, 2010). SAR is also dependent on the SALICYLIC ACID-BINDING PROTEIN2 (SABP2)-catalyzed conversion of methyl SA to SA in the distal tissues (Kumar and Klessig, 2003). Recent studies have suggested that methyl SA is the mobile signal required to initiate SAR in distal tissues in tobacco (Nicotiana tabacum; Park et al., 2007) and Arabidopsis (Arabidopsis thaliana; Liu et al., 2010), although another group reported a disparity in their findings related to the role of methyl SA in Arabidopsis (Attaran et al., 2009). Notably, the time point of requirement of SABP2 activity (between 48 and 72 h post inoculation; Park et al., 2009) does not coincide with the early generation and/or translocation of the mobile signal into distal tissues (within 6 h post inoculation).The mutations acyl carrier protein4 (acp4), long-chain acyl-CoA synthetase2 (lacs2), and lacs9, which are impaired in fatty acid (FA)/lipid flux (Schnurr et al., 2004; Xia et al., 2009), also compromise SAR (Xia et al., 2009). Detailed characterization has shown that the SAR defect in acp4, lacs2, and lacs9 mutants correlates with their defective cuticles. Analysis of the SAR response in acp4 plants has shown that these plants can generate the mobile signal required for inducing SAR but are unable to respond to it. It is likely that the defective cuticle in these plants impairs their ability to perceive the SAR signal, because mechanical abrasion of cuticles disrupts SAR in wild-type plants (Xia et al., 2009). This SAR-disruptive effect of cuticle abrasion is highly specific, because it does not alter local defenses and hinders SAR only during the time frame during which the mobile signal is translocated to distal tissues.SAR is also compromised in plants that contain a mutation in glycerol-3-phosphate dehydrogenase (Nandi et al., 2004). The glycerol-3-phosphate dehydrogenase (GLY1) reduces dihydroxyacetone phosphate to generate glycerol-3-phosphate, an obligatory component and precursor for the biosynthesis of all plant glycerolipids. Consequently, a mutation in GLY1 results in reduced carbon flux through the prokaryotic pathway of lipid biosynthesis, which leads to a reduction in the hexadecatrienoic (16:3) FAs (Miquel et al., 1998; Kachroo et al., 2004). Carbon flux and SAR are also impaired in plants containing mutations in FATTY ACID DESATURASE7 (FAD7; Chaturvedi et al., 2008). The FAD7 enzyme desaturates 16:2 and 18:2 FA species present on plastidial lipids to 16:3 and 18:3, respectively. Consequently, the fad7 mutant plants accumulate significantly reduced levels of trienoic FAs (16:3 and 18:3). Compromised SAR in mutants affected in certain plastidial FA/lipid pathways has prompted the suggestion that plastidial FA/lipids participate in SAR (Chaturvedi et al., 2008). Such a tempting conclusion is also favored by the fact that SAR requires the DIR1-encoded nonspecific lipid transfer protein, which is required for the generation and/or translocation of the mobile signal (Maldonado et al., 2002). In addition, azelaic acid, a dicarboxylic acid, was recently shown to prime SA biosynthesis and thereby SAR (Jung et al., 2009). The fact that azelaic acid is derived from oleic acid, a FA well known for its role in defense (Kachroo et al., 2003, 2004, 2005, 2007, 2008; Chandra-Shekara et al., 2007; Jiang et al., 2009; Venugopal et al., 2009; Xia et al., 2009), further suggests that FA/lipids might participate in SAR.This study was undertaken to reexamine the role of the FA/lipid pathways in SAR and to determine the nature of the FA/lipid species mediating SAR in fad7-1 plants. Our results show that impaired FA/lipid flux is not associated with compromised SAR in fad7-1 plants but, rather, with an abnormal cuticle, which is the result of a nonallelic mutation in the GLABRA1 (GL1) gene. Besides GL1, other mutations affecting trichome formation also compromised cuticle and thereby SAR. A compensatory effect of exogenous GA on gl1 plants suggests that GA might participate in resistance to bacterial pathogens by restoring cuticle formation.  相似文献   
996.
Bahiagrass (Paspalum notatum Flüggé) is the predominant forage grass in the southeastern US. The commercially important bahiagrass cultivar ‘Argentine’ is preferred for genetic transformation over sexual diploid cytotypes, since it produces uniform seed progeny through apomixis. Pseudogamous apomictic seed production in Argentine bahiagrass may contribute to transgene confinement. It is characterized by embryo development which is independent of fertilization of the egg cell, but requires fertilization with compatible pollen to produce the endosperm. Pollen-mediated gene transfer from transgenic, glufosinate-resistant apomictic bahiagrass as pollen donor at close proximity (0.5–3.5 m) with non-transgenic sexual or apomictic bahiagrass cultivars as pollen receptors was evaluated under field conditions. Hybridization frequency was evaluated by glufosinate herbicide resistance in >23,300 seedlings derived from open-pollinated (OP) pollen receptor plants. Average gene transfer between transgenic apomictic, tetraploid and sexual diploid bahiagrass was 0.03%. Herbicide-resistant hybrids confirmed by immuno-chromatographic detection of the PAT protein displayed a single copy bar gene identical to the pollen parent. Hybrids resulting from diploid pollen receptors were confirmed as triploids or aneu-triploids with significantly reduced vigor and seed set as compared to the parents. Transmission of transgenes to sexual bahiagrass is severely restricted by the ploidy difference between tetraploid apomicts and diploid sexual bahiagrass. Average gene transfer between transgenic apomictic tetraploid and non-transgenic, apomictic tetraploid bahiagrass was 0.17%, confirming a very low frequency of amphimixis in apomictic bahiagrass cultivars. While not providing complete transgene containment, gene transfer between transgenic apomictic and non-transgenic bahiagrass occurs at a much lower frequency than reported for other cross-pollinating or facultative apomictic grasses.  相似文献   
997.

Background

Although there is a growing body of evidence showing that patients with type 2 diabetes mellitus (T2DM) have poor glycemic control in general, it is not clear whether T2DM patients with pre-existing cardiovascular diseases (CVD) are more or less likely to have good glycemic control than patients without pre-existing CVD. Our aim was to examine the degree of glycemic control among T2DM patients in Europe with and without pre-existing CVD.

Methods

This is a matched cohort study based on a multi-center, observational study with retrospective medical chart reviews of T2DM patients in Spain, France, United Kingdom, Norway, Finland, Germany, and Poland. Included patients were aged >= 30 years at time of diagnosis of T2DM, had added a SU or a PPARγ agonist to failing metformin monotherapy (index date) and had pre-existing CVD (cases). A control cohort with T2DM without pre-existing CVD was identified using 1:1 propensity score matching. With difference-in-difference approach, logistic and linear regression analyses were applied to identify differences in glycemic control by CVD during the follow up period, after controlling for baseline demographics, clinical information, and concurrent anti-hyperglycemic medication use.

Results

The percentage of case patients with adequate glycemic control relative to control patients during the 1st, 2nd, 3rd, and 4th years after the index date was 19.9 vs. 26.5, 16.8 vs. 26.5, 18.8 vs. 28.3, and 16.8 vs. 23.5 respectively. Cases were significantly less likely to have adequate glycemic control (odds ratio: 0.62; 95% confidence interval: 0.46-0.82) than controls after adjusting for baseline differences, secular trend, and other potential confounding covariates.

Conclusions

T2DM patients with pre-existing CVD tended to have poorer glycemic control than those without pre-existing CVD, all other factors being equal. It suggests that clinicians may need to pay more attention to glycemic control among T2DM patients with CVD.  相似文献   
998.
The longevity‐assurance activity of the tumor suppressor p53 depends on the levels of Δ40p53 (p44), a short and naturally occurring isoform of the p53 gene. As such, increased dosage of p44 in the mouse leads to accelerated aging and short lifespan. Here we show that mice homozygous for a transgene encoding p44 (p44+/+) display cognitive decline and synaptic impairment early in life. The synaptic deficits are attributed to hyperactivation of insulin‐like growth factor 1 receptor (IGF‐1R) signaling and altered metabolism of the microtubule‐binding protein tau. In fact, they were rescued by either Igf1r or Mapt haploinsufficiency. When expressing a human or a ‘humanized’ form of the amyloid precursor protein (APP), p44+/+ animals developed a selective degeneration of memory‐forming and ‐retrieving areas of the brain, and died prematurely. Mechanistically, the neurodegeneration was caused by both paraptosis‐ and autophagy‐like cell deaths. These results indicate that altered longevity‐assurance activity of p53:p44 causes memory loss and neurodegeneration by affecting IGF‐1R signaling. Importantly, Igf1r haploinsufficiency was also able to correct the synaptic deficits of APP695/swe mice, a model of Alzheimer’s disease.  相似文献   
999.
The aetiology of anti-neutrophil cytoplasmic antibody (ANCA)-associated systemic vasculitis has not been well defined. Here we review two factors which may play a role in the pathogenesis of the disease: genetics and infection. In particular, we discuss the role of autoantibodies to LAMP-2, which may arise following infection with Gram-negative bacteria, and may contribute to the development of ANCA-associated systemic vasculitis in genetically susceptible individuals.  相似文献   
1000.
The Wnt‐signaling pathway is necessary in a variety of developmental processes and has been implicated in numerous pathologies. Wntless (Wls) binds to Wnt proteins and facilitates Wnt sorting and secretion. Conventional deletion of Wls results in early fetal lethality due to defects in body axis establishment. To gain insight into the function of Wls in later stages of development, we have generated a conditional null allele. Homozygous germline deletion of Wls confirmed prenatal lethality and failure of embryonic axis formation. Deletion of Wls using Wnt1‐cre phenocopied Wnt1 null abnormalities in the midbrain and hindbrain. In addition, conditional deletion of Wls in pancreatic precursor cells resulted in pancreatic hypoplasia similar to that previously observed after conditional β‐catenin deletion. This Wls conditional null allele will be valuable in detecting novel Wnt functions in development and disease. genesis 48:554–558, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号