首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12111篇
  免费   1081篇
  国内免费   6篇
  2022年   77篇
  2021年   148篇
  2020年   91篇
  2019年   119篇
  2018年   161篇
  2017年   124篇
  2016年   233篇
  2015年   398篇
  2014年   436篇
  2013年   550篇
  2012年   725篇
  2011年   709篇
  2010年   498篇
  2009年   438篇
  2008年   699篇
  2007年   653篇
  2006年   635篇
  2005年   689篇
  2004年   667篇
  2003年   645篇
  2002年   652篇
  2001年   112篇
  2000年   90篇
  1999年   149篇
  1998年   194篇
  1997年   125篇
  1996年   130篇
  1995年   124篇
  1994年   120篇
  1993年   111篇
  1992年   100篇
  1991年   85篇
  1990年   94篇
  1989年   84篇
  1988年   84篇
  1987年   88篇
  1986年   82篇
  1985年   114篇
  1984年   141篇
  1983年   114篇
  1982年   136篇
  1981年   146篇
  1980年   146篇
  1979年   81篇
  1978年   97篇
  1977年   88篇
  1976年   69篇
  1975年   74篇
  1974年   92篇
  1973年   82篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
991.
We introduce a near-real-time optical imaging method that works via the detection of the intrinsic fluorescence of life forms upon excitation by deep-UV (DUV) illumination. A DUV (<250-nm) source enables the detection of microbes in their native state on natural materials, avoiding background autofluorescence and without the need for fluorescent dyes or tags. We demonstrate that DUV-laser-induced native fluorescence can detect bacteria on opaque surfaces at spatial scales ranging from tens of centimeters to micrometers and from communities to single cells. Given exposure times of 100 μs and low excitation intensities, this technique enables rapid imaging of bacterial communities and cells without irreversible sample alteration or destruction. We also demonstrate the first noninvasive detection of bacteria on in situ-incubated environmental experimental samples from the deep ocean (Lo''ihi Seamount), showing the use of DUV native fluorescence for in situ detection in the deep biosphere and other nutrient-limited environments.Bacteria are widely recognized for living in extreme environments and as integral players in processes as varied as weathering, corrosion, environmental remediation, pathogenesis, and symbiosis (3, 4, 26). In most of these cases, surface-bound bacteria play key roles (1, 7, 19) and pose a particular challenge for researchers: the detection and imaging of life on reflective and/or fluorescent surfaces at the microbial (μm) scale (5, 12, 18). In environments ranging from the deep subsurface biosphere, dry deserts, and deep ice cores to hospitals and clean rooms, concentrations of bacteria, either as spores or active cells, can range from 109 to less than 1,000 cells/gram (14, 22, 24, 25, 29, 34). Finding and quantifying these microbes when they are on surfaces usually involves epifluorescence techniques, using dyes that bind to DNA or proteins, and examining the fluorescence of those dyes under UV or visible illumination (6, 8, 9, 16, 23, 31).Current tagging methods offer a number of significant disadvantages. First, the mineral surfaces on which the microbes are found are often themselves highly fluorescent, making the microbes difficult or impossible to differentiate; second, the act of adding the fluorescent probe can alter the physical and chemical nature of the system; additionally, nonspecific binding can lead to overestimation of cell abundance (2, 18). Because of the problems associated with the fluorescence of minerals and staining to detect microbial cells, researchers typically resort to physically removing cells from surfaces and staining/counting them separately from their matrix (12). This is an inefficient process that involves both cell loss and the loss of information about the mineralogical context that may have an influence on the microbial ecology. More recently, cell staining of active cells with SYBR green 1 and a computer-assisted analysis method has demonstrated an ability to separate fluorescent cells from nonspecific binding (17). However, a label-free method to search for and quantify the distribution and abundance of bacteria on natural samples over multiple spatial scales has not been available.Label-free optical approaches using Raman scattering methods have been offered as a nondestructive imaging solution (13, 27). However, these systems utilize laser energies greater than 1 × 109 joules/cm2, exceeding the energies necessary for chemical damage to the cell (33), require relatively flat surfaces for optimal collection efficiency, and can suffer from background fluorescence of the target and the substrate it may reside on.In response to these challenges, we have developed an optical method that enables detection and imaging of single bacterial cells on natural and opaque surfaces and assessment of bacterial density and distribution of single cells to biofilms over spatial scales ranging from microns to centimeters. The method utilizes deep-UV (DUV) (<250-nm)-laser-induced native fluorescence of organic components intrinsic to the cell or spore while avoiding autofluorescence interference from the substrate. Here we show DUV native fluorescence as a near-real-time optical imaging method and demonstrate the first noninvasive detection of bacteria on in situ-incubated environmental experimental samples from the deep ocean (Lo''ihi Seamount) for which we correlate the bacterial biomass to distributions of the iron-oxide precipitates.  相似文献   
992.
In 2001, envelopes loaded with Bacillus anthracis spores were mailed to Senators Daschle and Leahy as well as to the New York Post and NBC News buildings. Additional letters may have been mailed to other news agencies because there was confirmed anthrax infection of employees at these locations. These events heightened the awareness of the lack of understanding of the mechanism(s) by which objects contaminated with a biological agent might spread disease. This understanding is crucial for the estimation of the potential for exposure to ensure the appropriate response in the event of future attacks. In this study, equipment to simulate interactions between envelopes and procedures to analyze the spread of spores from a “payload” envelope (i.e., loaded internally with a powdered spore preparation) onto neighboring envelopes were developed. Another process to determine whether an aerosol could be generated by opening contaminated envelopes was developed. Subsequent generations of contaminated envelopes originating from a single payload envelope showed a consistent two-log decrease in the number of spores transferred from one generation to the next. Opening a tertiary contaminated envelope resulted in an aerosol containing 103 B. anthracis spores. We developed a procedure for sampling contaminated letters by a nondestructive method aimed at providing information useful for consequence management while preserving the integrity of objects contaminated during the incident and preserving evidence for law enforcement agencies.In September and October of 2001, letters containing Bacillus anthracis spores were distributed through the U.S. Postal Service (USPS), resulting in contamination of the mail processing and distribution center in Hamilton, NJ, as well as affiliated processing centers in Washington, DC, in New York City, NY, and in Wallingford, CT, as well as postal facilities along the path transited by letters mailed to a targeted media company in Florida. Subsequently, 22 individuals, including postal workers, persons who received or handled the contaminated letters, and persons exposed to environments contaminated by the letters, developed cases of anthrax, including both the inhalation and cutaneous forms of the disease (5, 18-20). Five of these cases of anthrax resulted in death (4, 7). There have been investigations into the relationships of infection and exposure in areas where known exposures occurred (1, 6, 8). However, for two of the individuals who developed inhalational anthrax, an elderly woman in Connecticut and a nurse in New York City, no B. anthracis spores were detected (based on environmental sampling) on their mail or in their homes (2, 17, 19, 20). A third individual, a bookkeeper from New Jersey, survived a cutaneous anthrax infection, and only a single positive environmental sample in her workplace was identified (19).For the three specific cases mentioned above, the authors of the corresponding studies hypothesized that infection may have resulted from exposure to mail cross contaminated by mail that went through the same sorting equipment around the time that the letters to Senators Leahy and Daschle were processed. Without evidence of B. anthracis spores in their homes and other areas they were known to have frequented and the lack of additional cases in these geographic areas, there is no way to confirm the route of their exposure. We hypothesize that these people may have been exposed by inhaling spores released from envelopes that they tore open and then discarded. The delay between exposure and disease would have been sufficient to permit the discarded items to enter into the solid waste or recycling stream, and any residual spores may have been removed by normal housekeeping activities. Alternatively, the true source of exposure may have been undetectable due to a low concentration of spores.Those cases of anthrax raise the question of what, if any, hazards may have been encountered in handling mail with secondary and tertiary contamination. These cases raise particular questions concerning the ability of disease-causing organisms to spread through cross contamination of second- and even third-generation fomites in sufficient numbers to cause infection and possible death.Following the attacks, numerous studies were conducted in the contaminated postal buildings to assess the degree of contamination and to better understand sampling methodologies. Subsequent laboratory studies have been performed to improve B. anthracis sample collection and detection (11, 16, 22, 24, 30). Programs have monitored aerosols within federal buildings, hospitals, and mail facilities (10, 15, 25, 27). Additionally, studies of mail sorting machinery and the potential of this machinery to cross contaminate mail have been done (3, 10). However, to date, no laboratory studies that examined the potential for cross contamination of mail through contact or mixing with contaminated letters have been published.Reaerosolization in general is a poorly studied phenomenon. Characterization of reaerosolization under a variety of circumstances was undertaken following the B. anthracis incidents in 2001 (21, 29). The concept of fomite-to-fomite transference of powdered pathogen residues has been even less well studied.The settling of a primary aerosol comprised of charged particles may be due at least in part to an increase in the mass of these charged particles that occurs when they interact with oppositely charged particles. Once deposited on a surface, several factors may act against reaerosolization. Charged particles that have interacted with oppositely charged particles and have effectively increased in mass may be substantially more difficult to entrain in an aerosol than the initial particles. For charged particles that have not interacted with other particles, there may be a direct electrostatic interaction between the charged particle and the surface on which it has landed which would tend to hold these particles onto the surface. Both of these effects should reduce the potential for reaerosolization.Particulate preparations have a variety of properties, such as hydrophobicity, zeta potential, particle shape, and other characteristics that may also affect the potential for reaerosolization. It would be interesting to characterize a large number of powders, to create a database of the characteristics and their potential for aerosol formation and reaerosolization of these powders, and to use this database of information for comparison of unknown powders. Knowing this information may assist in the public health and risk management decision making processes. Unfortunately, there is no comprehensive database for these characteristics, nor is there any well-accepted unifying theory for deriving the likelihood of reaerosolization from the characteristics of powders that are commonly measured. In addition, there may be unknown variables that have an impact on aerosolization or reaerosolization that become known over time with improvements in understanding the theory of aerosolization and technology for measurement of these variables. A further confounding factor would be the inability to collect this information from the actual material used in any incident. In the case of the 2001 attacks (and likely in future incidents), there was (and will likely be) little material available for such study. The material used in the attacks is inherently hazardous and must be handled in highly controlled settings. The material is therefore difficult and expensive to work with (23). Material used in an attack is also generally sequestered as evidentiary material, and information concerning preparation of a biological weapon used in an attack may be considered too sensitive for public release. This sensitivity may include unwillingness to provide access to information on the efficacy of a specific preparation method to malevolent individuals and the requirement to preserve information for use in successful identification and prosecution of the perpetrator of such an attack. However, it may be possible to collect fomites contaminated with trace amounts of the agent in the course of public health investigations. The current study details a method for dealing with these contaminated fomites to yield information useful for public health protection.A confounding factor in these cases may be the necessity to treat as much of the available bulk material as can be collected as evidence. As evidence, even small amounts of this material may not be available for scientific testing. There may also be restrictions on the handling and treatment of fomites contaminated with residual traces of biological threat agents. For instance, the owners of the fomites may value them highly and may not wish to see them destroyed in the hope that the object may be somehow decontaminated and returned or the owner may wish to prevent public disclosure of the nature or contents of a contaminated object, such as a letter. It is therefore incumbent upon researchers to develop methods that are as minimally invasive and destructive as possible to investigate the potential for fomite-to-fomite transmission.We constructed a device designed to expose uncontaminated fomites to envelopes bearing a powdered preparation of spores or to fomites that had been exposed to other fomites contaminated by the initial powder-bearing envelope. Specifically, fomites used in this study were envelopes containing a piece of paper. This device was designed to conduct the exposure in a consistent, reproducible manner and to allow investigation of the interaction and cross contamination that might be encountered between a “payload” letter (a letter that had been loaded internally with a powdered spore preparation) and other pieces of mail. Uncontaminated envelopes were tumbled with a single envelope containing a payload of milled Bacillus atrophaeus subsp. globigii spores. After tumbling three successive generations of envelopes, CFU counts from the outsides of the envelopes were taken. These estimates of spore loads on the outside of these envelopes may be compared to published human 50% lethal dose (LD50) estimates for aerosolized B. anthracis spores (12, 13). An additional series of envelopes was exposed to envelopes that had been contaminated during this first round of exposures, and those envelopes were found to be externally contaminated as well. We also studied opening an envelope that had been exposed to a payload envelope with either a finger or a letter opener to determine if these activities caused an aerosolization or reaerosolization of a sufficient number of spores to pose a risk of disease through inhalation.It is difficult to balance the concerns of making information public during a public health response and providing sufficient information for information risk management decision making while at the same time preserving the evidence for use by law enforcement agencies for eventual prosecution of individuals accused of committing crimes. We identified a nondestructive procedure by which contaminated mail can be analyzed and biological material collected while still preserving evidence for law enforcement agencies, allowing the payload envelope to be used as evidence while still permitting an assessment of its biological contaminant burden.  相似文献   
993.
? Premise of the study: New primers were developed for the nuclear marker glutamine synthetase (ncpGS) in Oxalidaceae. ? Methods and Results: New forward and reverse primers were designed and tested across a wide range of Oxalidaceae. Selected taxa were sequenced to confirm homology. Potential for phylogenetic study was assessed by comparing sequenced taxa with commonly used nuclear and plastid markers. ? Conclusions: Four out of five Oxalidaceae genera and all tested Oxalis spp. amplified successfully. Sequencing confirmed homology of the amplicon. Parsimony analysis of ncpGS showed that it is a promising candidate for future phylogenetic work in Oxalidaceae.  相似文献   
994.
995.
Summary Estimation of abundance is important in both open and closed population capture–recapture analysis, but unmodeled heterogeneity of capture probability leads to negative bias in abundance estimates. This article defines and develops a suite of open population capture–recapture models using finite mixtures to model heterogeneity of capture and survival probabilities. Model comparisons and parameter estimation use likelihood‐based methods. A real example is analyzed, and simulations are used to check the main features of the heterogeneous models, especially the quality of estimation of abundance, survival, recruitment, and turnover. The two major advances in this article are the provision of realistic abundance estimates that take account of heterogenetiy of capture, and an appraisal of the amount of overestimation of survival arising from conditioning on the first capture when heterogeneity of survival is present.  相似文献   
996.
Aberrant repair of DNA double-strand breaks (DSBs) is thought to be important in the generation of gross chromosomal rearrangements (GCRs). To examine how DNA DSBs might lead to GCRs, we investigated the repair of a single DNA DSB in a structurally unstable cell line. An I-SceI recognition site was introduced into OVCAR-8 cells between a constitutive promoter (EF1α) and the Herpes simplex virus thymidine kinase (TK) gene, which confers sensitivity to gancyclovir (GCV). Expression of I-SceI in these cells caused a single DSB. Clones with aberrant repair could acquire resistance to GCV by separation of the EF1α promoter from the TK gene, or deletion of either the EF1α promoter or the TK gene. All mutations that we identified were interstitial deletions. Treatment of cells with etoposide or bleomycin, agents known to produce DNA DSBs following expression of I-SceI also did not generate GCRs. Because we identified solely interstitial deletions using the aforementioned negative selection system, we developed a positive selection system to produce GCR. A construct containing an I-SceI restriction site immediately followed by a hygromycin phosphotransferase cDNA, with no promoter, was stably integrated into OVCAR-8 cells. DNA DSBs were produced by an I-SceI expression vector. None of the hygromycin resistant clones recovered had linked the hygromycin phosphotransferase cDNA to an endogenous promoter, but had instead captured a portion of the I-SceI expression vector. These results indicate that even in a structurally unstable malignant cell line, the majority of DNA DSBs are repaired by religation of the two broken chromosome ends, without the introduction of a GCR.  相似文献   
997.
998.
Systemic acquired resistance (SAR) is a form of defense that provides resistance against a broad spectrum of pathogens in plants. Previous work indicates a role for plastidial glycerolipid biosynthesis in SAR. Specifically, mutations in FATTY ACID DESATURASE7 (FAD7), which lead to reduced trienoic fatty acid levels and compromised plastidial lipid biosynthesis, have been associated with defective SAR. We show that the defective SAR in Arabidopsis (Arabidopsis thaliana) fad7-1 plants is not associated with a mutation in FAD7 but rather with a second-site mutation in GLABRA1 (GL1), a gene well known for its role in trichome formation. The compromised SAR in gl1 plants is associated with impairment in their cuticles. Furthermore, mutations in two other components of trichome development, GL3 and TRANSPARENT TESTA GLABRA1, also impaired cuticle development and SAR. This suggests an overlap in the biochemical pathways leading to cuticle and trichome development. Interestingly, exogenous application of gibberellic acid (GA) not only enhanced SAR in wild-type plants but also restored SAR in gl1 plants. In contrast to GA, the defense phytohoromes salicylic acid and jasmonic acid were unable to restore SAR in gl1 plants. GA application increased levels of cuticular components but not trichome formation on gl1 plants, thus implicating cuticle, but not trichomes, as an important component of SAR. Our findings question the prudence of using mutant backgrounds for genetic screens and underscore a need to reevaluate phenotypes previously studied in the gl1 background.Plants have evolved a large array of defense mechanisms to resist infection by pathogens. Upon recognition, the host plant initiates one or more signal transduction pathways that activate various plant defenses and thereby prevent pathogen colonization. In many cases, resistance is associated with increased expression of defense genes, including the pathogenesis-related (PR) genes and the accumulation of salicylic acid (SA) in the inoculated leaf. Induction of these responses is accompanied by localized cell death at the site of pathogen entry, which can often restrict the spread of pathogen to cells within and immediately surrounding the lesions. This phenomenon, known as the hypersensitive response, is one of the earliest visible manifestations of induced defense responses and resembles programmed cell death in animals (Dangl et al., 1996; Gray, 2002; Glazebrook, 2005; Kachroo and Kachroo, 2006). Concurrent with hypersensitive response development, defense reactions are triggered in sites both local and distal from the primary infection. This phenomenon, known as systemic acquired resistance (SAR), is accompanied by a local and systemic increase in SA and jasmonic acid (JA) and a concomitant up-regulation of a large set of defense genes (Durrant and Dong, 2004; Truman et al., 2007; Vlot et al., 2009).SAR involves the generation of a mobile signal in the primary leaves that, upon translocation to the distal tissues, activates defense responses resulting in broad-spectrum resistance. The production of the mobile signal takes places within 3 to 6 h of avirulent pathogen inoculation in the primary leaves (Smith-Becker et al., 1998), and the inoculated leaf must remain attached for at least 4 h after inoculation for immunity to be induced in the systemic tissues (Rasmussen et al., 1991). Mutations compromising SA synthesis or impairing SA, JA, or auxin signaling abolish SAR (Durrant and Dong, 2004; Truman et al., 2007, 2010). SAR is also dependent on the SALICYLIC ACID-BINDING PROTEIN2 (SABP2)-catalyzed conversion of methyl SA to SA in the distal tissues (Kumar and Klessig, 2003). Recent studies have suggested that methyl SA is the mobile signal required to initiate SAR in distal tissues in tobacco (Nicotiana tabacum; Park et al., 2007) and Arabidopsis (Arabidopsis thaliana; Liu et al., 2010), although another group reported a disparity in their findings related to the role of methyl SA in Arabidopsis (Attaran et al., 2009). Notably, the time point of requirement of SABP2 activity (between 48 and 72 h post inoculation; Park et al., 2009) does not coincide with the early generation and/or translocation of the mobile signal into distal tissues (within 6 h post inoculation).The mutations acyl carrier protein4 (acp4), long-chain acyl-CoA synthetase2 (lacs2), and lacs9, which are impaired in fatty acid (FA)/lipid flux (Schnurr et al., 2004; Xia et al., 2009), also compromise SAR (Xia et al., 2009). Detailed characterization has shown that the SAR defect in acp4, lacs2, and lacs9 mutants correlates with their defective cuticles. Analysis of the SAR response in acp4 plants has shown that these plants can generate the mobile signal required for inducing SAR but are unable to respond to it. It is likely that the defective cuticle in these plants impairs their ability to perceive the SAR signal, because mechanical abrasion of cuticles disrupts SAR in wild-type plants (Xia et al., 2009). This SAR-disruptive effect of cuticle abrasion is highly specific, because it does not alter local defenses and hinders SAR only during the time frame during which the mobile signal is translocated to distal tissues.SAR is also compromised in plants that contain a mutation in glycerol-3-phosphate dehydrogenase (Nandi et al., 2004). The glycerol-3-phosphate dehydrogenase (GLY1) reduces dihydroxyacetone phosphate to generate glycerol-3-phosphate, an obligatory component and precursor for the biosynthesis of all plant glycerolipids. Consequently, a mutation in GLY1 results in reduced carbon flux through the prokaryotic pathway of lipid biosynthesis, which leads to a reduction in the hexadecatrienoic (16:3) FAs (Miquel et al., 1998; Kachroo et al., 2004). Carbon flux and SAR are also impaired in plants containing mutations in FATTY ACID DESATURASE7 (FAD7; Chaturvedi et al., 2008). The FAD7 enzyme desaturates 16:2 and 18:2 FA species present on plastidial lipids to 16:3 and 18:3, respectively. Consequently, the fad7 mutant plants accumulate significantly reduced levels of trienoic FAs (16:3 and 18:3). Compromised SAR in mutants affected in certain plastidial FA/lipid pathways has prompted the suggestion that plastidial FA/lipids participate in SAR (Chaturvedi et al., 2008). Such a tempting conclusion is also favored by the fact that SAR requires the DIR1-encoded nonspecific lipid transfer protein, which is required for the generation and/or translocation of the mobile signal (Maldonado et al., 2002). In addition, azelaic acid, a dicarboxylic acid, was recently shown to prime SA biosynthesis and thereby SAR (Jung et al., 2009). The fact that azelaic acid is derived from oleic acid, a FA well known for its role in defense (Kachroo et al., 2003, 2004, 2005, 2007, 2008; Chandra-Shekara et al., 2007; Jiang et al., 2009; Venugopal et al., 2009; Xia et al., 2009), further suggests that FA/lipids might participate in SAR.This study was undertaken to reexamine the role of the FA/lipid pathways in SAR and to determine the nature of the FA/lipid species mediating SAR in fad7-1 plants. Our results show that impaired FA/lipid flux is not associated with compromised SAR in fad7-1 plants but, rather, with an abnormal cuticle, which is the result of a nonallelic mutation in the GLABRA1 (GL1) gene. Besides GL1, other mutations affecting trichome formation also compromised cuticle and thereby SAR. A compensatory effect of exogenous GA on gl1 plants suggests that GA might participate in resistance to bacterial pathogens by restoring cuticle formation.  相似文献   
999.
Bahiagrass (Paspalum notatum Flüggé) is the predominant forage grass in the southeastern US. The commercially important bahiagrass cultivar ‘Argentine’ is preferred for genetic transformation over sexual diploid cytotypes, since it produces uniform seed progeny through apomixis. Pseudogamous apomictic seed production in Argentine bahiagrass may contribute to transgene confinement. It is characterized by embryo development which is independent of fertilization of the egg cell, but requires fertilization with compatible pollen to produce the endosperm. Pollen-mediated gene transfer from transgenic, glufosinate-resistant apomictic bahiagrass as pollen donor at close proximity (0.5–3.5 m) with non-transgenic sexual or apomictic bahiagrass cultivars as pollen receptors was evaluated under field conditions. Hybridization frequency was evaluated by glufosinate herbicide resistance in >23,300 seedlings derived from open-pollinated (OP) pollen receptor plants. Average gene transfer between transgenic apomictic, tetraploid and sexual diploid bahiagrass was 0.03%. Herbicide-resistant hybrids confirmed by immuno-chromatographic detection of the PAT protein displayed a single copy bar gene identical to the pollen parent. Hybrids resulting from diploid pollen receptors were confirmed as triploids or aneu-triploids with significantly reduced vigor and seed set as compared to the parents. Transmission of transgenes to sexual bahiagrass is severely restricted by the ploidy difference between tetraploid apomicts and diploid sexual bahiagrass. Average gene transfer between transgenic apomictic tetraploid and non-transgenic, apomictic tetraploid bahiagrass was 0.17%, confirming a very low frequency of amphimixis in apomictic bahiagrass cultivars. While not providing complete transgene containment, gene transfer between transgenic apomictic and non-transgenic bahiagrass occurs at a much lower frequency than reported for other cross-pollinating or facultative apomictic grasses.  相似文献   
1000.

Background

Although there is a growing body of evidence showing that patients with type 2 diabetes mellitus (T2DM) have poor glycemic control in general, it is not clear whether T2DM patients with pre-existing cardiovascular diseases (CVD) are more or less likely to have good glycemic control than patients without pre-existing CVD. Our aim was to examine the degree of glycemic control among T2DM patients in Europe with and without pre-existing CVD.

Methods

This is a matched cohort study based on a multi-center, observational study with retrospective medical chart reviews of T2DM patients in Spain, France, United Kingdom, Norway, Finland, Germany, and Poland. Included patients were aged >= 30 years at time of diagnosis of T2DM, had added a SU or a PPARγ agonist to failing metformin monotherapy (index date) and had pre-existing CVD (cases). A control cohort with T2DM without pre-existing CVD was identified using 1:1 propensity score matching. With difference-in-difference approach, logistic and linear regression analyses were applied to identify differences in glycemic control by CVD during the follow up period, after controlling for baseline demographics, clinical information, and concurrent anti-hyperglycemic medication use.

Results

The percentage of case patients with adequate glycemic control relative to control patients during the 1st, 2nd, 3rd, and 4th years after the index date was 19.9 vs. 26.5, 16.8 vs. 26.5, 18.8 vs. 28.3, and 16.8 vs. 23.5 respectively. Cases were significantly less likely to have adequate glycemic control (odds ratio: 0.62; 95% confidence interval: 0.46-0.82) than controls after adjusting for baseline differences, secular trend, and other potential confounding covariates.

Conclusions

T2DM patients with pre-existing CVD tended to have poorer glycemic control than those without pre-existing CVD, all other factors being equal. It suggests that clinicians may need to pay more attention to glycemic control among T2DM patients with CVD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号