首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3684篇
  免费   336篇
  4020篇
  2021年   40篇
  2020年   31篇
  2019年   34篇
  2018年   34篇
  2017年   39篇
  2016年   58篇
  2015年   98篇
  2014年   131篇
  2013年   126篇
  2012年   143篇
  2011年   181篇
  2010年   80篇
  2009年   111篇
  2008年   133篇
  2007年   126篇
  2006年   136篇
  2005年   127篇
  2004年   105篇
  2003年   114篇
  2002年   91篇
  2001年   100篇
  2000年   116篇
  1999年   97篇
  1998年   40篇
  1997年   57篇
  1996年   50篇
  1994年   30篇
  1993年   38篇
  1992年   78篇
  1991年   90篇
  1990年   78篇
  1989年   70篇
  1988年   68篇
  1987年   52篇
  1986年   56篇
  1985年   77篇
  1984年   81篇
  1983年   68篇
  1982年   55篇
  1981年   46篇
  1980年   46篇
  1979年   61篇
  1978年   53篇
  1977年   46篇
  1976年   36篇
  1975年   41篇
  1974年   45篇
  1973年   26篇
  1972年   36篇
  1969年   26篇
排序方式: 共有4020条查询结果,搜索用时 24 毫秒
961.

Background

Previous studies of major depressive disorder (MDD) have focused on abnormalities in the prefrontal cortex and medial temporal regions. There has been little investigation in MDD of midbrain and subcortical regions central to reward/aversion function, such as the ventral tegmental area/substantia nigra (VTA/SN), and medial forebrain bundle (MFB).

Methodology/Principal Findings

We investigated the microstructural integrity of this circuitry using diffusion tensor imaging (DTI) in 22 MDD subjects and compared them with 22 matched healthy control subjects. Fractional anisotropy (FA) values were increased in the right VT and reduced in dorsolateral prefrontal white matter in MDD subjects. Follow-up analysis suggested two distinct subgroups of MDD patients, which exhibited non-overlapping abnormalities in reward/aversion circuitry. The MDD subgroup with abnormal FA values in VT exhibited significantly greater trait anxiety than the subgroup with normal FA values in VT, but the subgroups did not differ in levels of anhedonia, sadness, or overall depression severity.

Conclusions/Significance

These findings suggest that MDD may be associated with abnormal microstructure in brain reward/aversion regions, and that there may be at least two subtypes of microstructural abnormalities which each impact core symptoms of depression.  相似文献   
962.
Summary The possible conformations of integral membrane proteins are restricted by the nature of their environment. In order to satisfy the requirement of maximum hydrogen bonding, those protions of the polypeptide chain which are in contact with lipid hydrocarbon must be organized into regions of regular secondary structure. As possible models of the intramembranous regions of integral membrane proteins, three types of regular structues are discussed. Two, the alpha helix and the beta-pleated sheet, are regularly occurring structural features of soluble proteins. The third is a newly proposed class of conformations called beta helices. These helices have unique features which make them particularly well-suited to the lipid bilayer environment. The central segment of the membrane-spanning protein glycophorin can be arranged into a beta helix with a hydrophobic exterior and a polar interior containing charged amino-acid side chains. Such structures could function as transmembrane ion channels. A model of the activation process based on a hypothetical equilibrium between alpha and beta helical forms of a transmembrane protein is presented. The model can accurately reproduce the kinetics and voltage dependence of the channels in nerve.  相似文献   
963.
The activities of several enzymes, including ribulose-1,5-diphosphate (RuDP) carboxylase (EC 4.1.1.39) and phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) were measured as a function of leaf age in Z. mays. Mature leaf tissue had a RuDP-carboxylase activity of 296.7 mol CO2 g-1 fresh weight h-1 and a PEP-carboxylase activity of 660.6 mol CO2 g-1 fresh weight h-1. In young corn leaves the activity of the two enzymes was 11 and 29%, respectively, of the mature leaves. In senescent leaf tissue, RuDP carboxylase activity declined more rapidly than that of any of the other enzymes assayed. On a relative basis the activities of NADP malic enzyme (EC 1.1.1.40), aspartate (EC 2.6.1.1) and alanine aminotransferase (EC 2.6.1.2), and NAD malate dehydrogenase (EC 1.1.1.37) exceeded those of both PEP and RuDP carboxylase in young and senescent leaf tissue. Pulse-chase labeling experiments with mature and senescent leaf tissue show that the predominant C4 acid differs between the two leaf ages. Labeling of alanine in senescent tissue never exceeded 4% of the total 14C remaining during the chase period, while in mature leaf tissue alanine accounted for 20% of the total after 60 s in 12CO2. The activity of RuDP carboxylase during leaf ontogeny in Z. mays parallels the development of the activity of this enzyme in C3 plants.Abbreviations RuDP ribulose-1,5-diphosphate - PEP phosphoenol pyruvate - PGA 3-phosphoglycerate  相似文献   
964.
Textile mill effluents (TMEs) are wastewater discharges from textile mills that are involved in wet processes such as scouring, neutralizing, desizing, mercerizing, carbonizing, fulling, bleaching, dyeing, printing and other wet finishing activities. TMEs are complex mixtures containing a wide variety of chemicals which have a range of pH, temperature, colour and oxygen demand characteristics. Most wet processing mills in Canada discharge to municipal wastewater collection systems where those effluents receive some form of wastewater treatment. This paper reports the results of a tiered assessment approach that was used to determine the impacts on the aquatic environment of whole effluents discharged by wet processing textile mills in Canada. A conservative assessment indicated that no substantial threat to the aquatic environment was associated with TMEs receiving secondary or tertiary treatment, on- site or at a municipal wastewater treatment plant, prior to discharge to receiving waters. In the case of TMEs receiving only primary treatment or no treatment prior to discharge, a weight-of-evidence risk assessment supported the conclusion that those effluents could produce significant environmental harm in aquatic environments.  相似文献   
965.
Jaime Otero  Jan Henning L'Abée‐Lund  Ted Castro‐Santos  Kjell Leonardsson  Geir O. Storvik  Bror Jonsson  Brian Dempson  Ian C. Russell  Arne J. Jensen  Jean‐Luc Baglinière  Mélanie Dionne  John D. Armstrong  Atso Romakkaniemi  Benjamin H. Letcher  John F. Kocik  Jaakko Erkinaro  Russell Poole  Ger Rogan  Hans Lundqvist  Julian C. MacLean  Erkki Jokikokko  Jo Vegar Arnekleiv  Richard J. Kennedy  Eero Niemelä  Pablo Caballero  Paul A. Music  Thorolfur Antonsson  Sigurdur Gudjonsson  Alexey E. Veselov  Anders Lamberg  Steve Groom  Benjamin H. Taylor  Malcolm Taberner  Mary Dillane  Fridthjofur Arnason  Gregg Horton  Nils A. Hvidsten  Ingi R. Jonsson  Nina Jonsson  Simon McKelvey  Tor F. Næsje  Øystein Skaala  Gordon W. Smith  Harald Sægrov  Nils C. Stenseth  Leif Asbjørn Vøllestad 《Global Change Biology》2014,20(1):61-75
Migrations between different habitats are key events in the lives of many organisms. Such movements involve annually recurring travel over long distances usually triggered by seasonal changes in the environment. Often, the migration is associated with travel to or from reproduction areas to regions of growth. Young anadromous Atlantic salmon (Salmo salar) emigrate from freshwater nursery areas during spring and early summer to feed and grow in the North Atlantic Ocean. The transition from the freshwater (‘parr’) stage to the migratory stage where they descend streams and enter salt water (‘smolt’) is characterized by morphological, physiological and behavioural changes where the timing of this parr‐smolt transition is cued by photoperiod and water temperature. Environmental conditions in the freshwater habitat control the downstream migration and contribute to within‐ and among‐river variation in migratory timing. Moreover, the timing of the freshwater emigration has likely evolved to meet environmental conditions in the ocean as these affect growth and survival of the post‐smolts. Using generalized additive mixed‐effects modelling, we analysed spatio‐temporal variations in the dates of downstream smolt migration in 67 rivers throughout the North Atlantic during the last five decades and found that migrations were earlier in populations in the east than the west. After accounting for this spatial effect, the initiation of the downstream migration among rivers was positively associated with freshwater temperatures, up to about 10 °C and levelling off at higher values, and with sea‐surface temperatures. Earlier migration occurred when river discharge levels were low but increasing. On average, the initiation of the smolt seaward migration has occurred 2.5 days earlier per decade throughout the basin of the North Atlantic. This shift in phenology matches changes in air, river, and ocean temperatures, suggesting that Atlantic salmon emigration is responding to the current global climate changes.  相似文献   
966.
967.

Background

A nationwide survey on the microbial etiology of cases of subclinical mastitis in dairy cows was carried out on dairy farms in Sweden. The aim was to investigate the microbial panorama and the occurrence of antimicrobial resistance. Moreover, differences between newly infected cows and chronically infected cows were investigated.

Methods

In total, 583 quarter milk samples were collected from 583 dairy cows at 226 dairy farms from February 2008 to February 2009. The quarter milk samples were bacteriological investigated and scored using the California Mastitis Test. Staphylococci were tested for betalactamase production and presence of resistance was evaluated in all specific udder pathogens. Differences between newly infected cows and chronically infected cows were statistically investigated using logistic regression analysis.

Results

The most common isolates of 590 bacteriological diagnoses were Staphylococcus (S) aureus (19%) and coagulase-negative staphylococci (CNS; 16%) followed by Streptococcus (Str) dysgalactiae (9%), Str. uberis (8%), Escherichia (E.) coli (2.9%), and Streptococcus spp. (1.9%). Samples with no growth or contamination constituted 22% and 18% of the diagnoses, respectively. The distribution of the most commonly isolated bacteria considering only bacteriological positive samples were: S. aureus - 31%, CNS - 27%, Str. dysgalactiae - 15%, Str. uberis - 14%, E. coli - 4.8%, and Streptococcus spp. - 3.1%. There was an increased risk of finding S. aureus, Str. uberis or Str. dysgalactiae in milk samples from chronically infected cows compared to findings in milk samples from newly infected cows. Four percent of the S. aureus isolates and 35% of the CNS isolates were resistant to penicillin G. Overall, resistance to other antimicrobials than penicillin G was uncommon.

Conclusions

Staphylococcus aureus and CNS were the most frequently isolated pathogens and resistance to antimicrobials was rare.  相似文献   
968.
969.
In an effort to better understand oocyte function, we utilized two-dimensional (2D) electrophoresis and mass spectrometry to identify proteins that are differentially expressed during murine oocyte maturation. Proteins from 500 germinal vesicle (GV) and metaphase II-(MII) arrested oocytes were extracted, resolved on 2D electrophoretic gels, and stained with silver. Analysis of the gels indicated that 12 proteins appeared to be differentially expressed between the GV and MII stage. These proteins were then cored from the 2D gels and identified by mass spectrometry as: transforming acidic coiled-coil protein 3 (TACC3), heat shock protein 105 (HSP105), programmed cell death six-interacting protein (PDCD6IP), stress-inducible phosphoprotein (STI1), importin alpha2, adenylsuccinate synthase (ADDS), nudix, spindlin, lipocalin, lysozyme, translationally controlled tumor protein (TCTP), and nucleoplasmin 2 (NPM2). Interestingly, PDCD6IP, importin alpha2, spindlin, and NPM2 appear slightly larger in mass and more acidic on the MII oocyte gel compared to the GV oocyte gel, suggesting that they may be post-translationally modified during oocyte maturation. Given NPM2 is an oocyte-restricted protein, we chose to further investigate its properties during oocyte maturation and preimplantation development. Real-Time RT-PCR showed that NPM2 mRNA levels rapidly decline at fertilization. Indirect immunofluorescence analysis showed that, with the exception of cortical localization in MII-arrested oocytes, NPM2 is localized to the nucleus of both GV stage oocytes and all stages of preimplantation embryos. We then performed one-dimensional (1D) western blot analysis of mouse oocytes and preimplantation embryos and found that, as implicated by the 2D gel comparison, NPM2 undergoes a phosphatase-sensitive electrophoretic mobility shift during the GV to MII transition. The slower migrating NPM2 form is also present in pronuclear embryos but by the two-cell stage, the majority of NPM2 exists as the faster migrating form, which persists to the blastocyst stage.  相似文献   
970.
The ventrolateral thalamus (VL) is a primary relay point between the basal ganglia and the primary motor cortex (M1). Using dual probe microdialysis and locomotor behavior monitoring, we investigated the contribution of VL input into M1 during amphetamine (AMPH)‐stimulated monoamine release and hyperlocomotion in rats. Tetrodotoxin (10 μM) perfusion into the VL significantly lowered hyperactivity induced by AMPH (1 mg/kg i.p.). This behavioral response corresponded to reduced cortical glutamate and monoamine release. To determine which glutamate receptors the thalamocortical projections acted upon, we perfused either the α‐amino‐3‐(3‐hydroxy‐5‐methyl‐isoxazol‐4‐yl)propanoic acid (AMPA)/kainate receptor antagonist 2,3‐dihydroxy‐6‐nitro‐7‐sulfamoyl‐benzo[f]quinoxaline‐2,3‐dione (NBQX) (10 μM) or the N‐methyl‐D‐aspartic acid (NMDA) receptor antagonist (MK‐801) intracortically followed by systemic AMPH. The results show that AMPA/kainate, and to a lesser extent NMDA receptors, mediated the observed effects. As glutamate–monoamine interactions could possibly occur through local or circuit‐based mechanisms, we isolated and perfused M1 tissue ex vivo to determine the extent of local glutamate–dopamine interactions. Taken together, these results demonstrate that AMPH generates hyperlocomotive states via thalamocortical signaling and that cortical AMPA receptors are an important mediator of these effects.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号