首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   161篇
  免费   15篇
  2022年   4篇
  2021年   5篇
  2019年   3篇
  2018年   2篇
  2017年   4篇
  2016年   2篇
  2015年   4篇
  2014年   8篇
  2013年   13篇
  2012年   6篇
  2011年   7篇
  2010年   4篇
  2009年   6篇
  2008年   8篇
  2007年   14篇
  2006年   6篇
  2005年   9篇
  2004年   11篇
  2003年   13篇
  2002年   5篇
  2001年   4篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1997年   3篇
  1996年   3篇
  1995年   4篇
  1994年   1篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1987年   4篇
  1986年   1篇
  1985年   2篇
  1980年   1篇
  1978年   2篇
  1973年   1篇
  1967年   1篇
排序方式: 共有176条查询结果,搜索用时 15 毫秒
101.
Exercise professionals seeking to develop evidence-based training programs rely on several training principles demonstrated through research and professional experience. In an effort to further research examining these principles, an investigation was designed and completed to evaluate the compatibility of cardiovascular endurance and neuromuscular power training. Sixteen Division-I collegiate baseball players were divided into two training groups with lower body power measured before and after their college playing season. The two groups differed in training in that one group performed moderate- to high-intense cardiovascular endurance training 3-4 days per week throughout the season, while the other group participated in speed/speed endurance training. A significant difference between groups (P < .05) was identified in the change in lower body power during the baseball season. During the season, the endurance training group decreased an average of 39.50 +/- 128.03 watts while the speed group improved an average of 210.63 +/- 168.96 watts. These data demonstrate that moderate- to high-intense cardiovascular endurance and neuromuscular power training do not appear to be compatible when performed simultaneously. For baseball players, athletes who rely heavily on power and speed, conventional baseball conditioning involving significant amounts of cardiovascular endurance training should be altered to include more speed/power interval training.  相似文献   
102.
103.
Prokaryotic toxin-antitoxin modules are involved in major physiological events set in motion under stress conditions. The toxin Doc (death on curing) from the phd/doc module on phage P1 hosts the C-terminal domain of its antitoxin partner Phd (prevents host death) through fold complementation. This Phd domain is intrinsically disordered in solution and folds into an alpha-helix upon binding to Doc. The details of the interactions reveal the molecular basis for the inhibitory action of the antitoxin. The complex resembles the Fic (filamentation induced by cAMP) proteins and suggests a possible evolutionary origin for the phd/doc operon. Doc induces growth arrest of Escherichia coli cells in a reversible manner, by targeting the protein synthesis machinery. Moreover, Doc activates the endogenous E. coli RelE mRNA interferase but does not require this or any other known chromosomal toxin-antitoxin locus for its action in vivo.  相似文献   
104.
Prokaryotic toxin–antitoxin loci encode mRNA cleaving enzymes that inhibit translation. Two types are known: those that cleave mRNA codons at the ribosomal A site and those that cleave any RNA site specifically. RelE of Escherichia coli cleaves mRNA at the ribosomal A site in vivo and in vitro but does not cleave pure RNA in vitro. RelE exhibits an incomplete RNase fold that may explain why RelE requires its substrate mRNA to presented by the ribosome. In contrast, RelE homologue YoeB has a complete RNase fold and cleaves RNA independently of ribosomes in vitro. Here, we show that YoeB cleavage of mRNA is strictly dependent on translation of the mRNA in vivo. Non-translated model mRNAs were not cleaved whereas the corresponding wild-type mRNAs were cleaved efficiently. Model mRNAs carrying frameshift mutations exhibited a YoeB-mediated cleavage pattern consistent with the reading frameshift thus giving strong evidence that YoeB cleavage specificity was determined by the translational reading frame. In contrast, site-specific mRNA cleavage by MazF occurred independently of translation. In one case, translation seriously influenced MazF cleavage efficiency, thus solving a previous apparent paradox. We propose that translation enhances MazF-mediated cleavage of mRNA by destabilization of the mRNA secondary structure.  相似文献   
105.
Microtubules are significant therapeutic targets for the treatment of cancer, where suppression of microtubule dynamicity by drugs such as paclitaxel forms the basis of clinical efficacy. Peloruside A, a macrolide isolated from New Zealand marine sponge Mycale hentscheli, is a microtubule-stabilizing agent that synergizes with taxoid drugs through a unique site and is an attractive lead compound in the development of combination therapies. We report here unique allosteric properties of microtubule stabilization via peloruside A and present a structural model of the peloruside-binding site. Using a strategy involving comparative hydrogen-deuterium exchange mass spectrometry of different microtubule-stabilizing agents, we suggest that taxoid-site ligands epothilone A and docetaxel stabilize microtubules primarily through improved longitudinal interactions centered on the interdimer interface, with no observable contributions from lateral interactions between protofilaments. The mode by which peloruside A achieves microtubule stabilization also involves the interdimer interface, but includes contributions from the α/β-tubulin intradimer interface and protofilament contacts, both in the form of destabilizations. Using data-directed molecular docking simulations, we propose that peloruside A binds within a pocket on the exterior of β-tubulin at a previously unknown ligand site, rather than on α-tubulin as suggested in earlier studies.  相似文献   
106.

Background

Type 2 diabetes is associated with substantial cardiovascular morbidity and mortality arising from the high prevalence of cardiovascular risk factors such as hypertension, dyslipidaemia, obesity, poor glycaemic control and albuminuria. Adequacy of control of these risk factors determines the frequency and outcome of cardiovascular events in the patients. Current clinical practice guidelines emphasize primary prevention of cardiovascular disease in type 2 diabetes. There is scarce data from the developing countries, Kenya included, on clinical care of patients with type 2 diabetes in the regions that are far away from tertiary health facilities. So we determined the adequacy of control of the modifiable risk factors: glycaemic control, hypertension, dyslipidemia, obesity and albuminuria in the study patients from rural and peri-urban dwelling.

Methods

This was a cross-sectional study on 385 randomly selected ambulatory patients with type 2 diabetes without overt complications. They were on follow up for at least 6 months at the Out-patient diabetes clinic of Nyeri County Hospital, a public health facility located in the central region of Kenya.

Results

Females were 65.5%. The study subjects had a mean duration of diabetes of 9.4 years, IQR of 3.0–14 years. Their mean age was 63.3 years, IQR of 56-71 years.Only 20.3% of our subjects had simultaneous optimal control of the three (3) main cardiovascular risk factors of hypertension, high LDL-C and hyperglycaemia at the time of the study. The prevalence of cardiovascular risk factors were as follows: HbA1c above 7% was 60.5% (95% CI, 55.6–65.5), hypertension, 49.6% of whom 76.6% (95% CI, 72.5–80.8) were poorly controlled. High LDL-Cholesterol above 2.0 mmol/L was found in 77.1% (95% CI 73.0–81.3) and Albuminuria occurred in 32.7% (95% CI 27.8–37.4). The prevalence of the other habits with cardiovascular disease risk were: excess alcohol intake at 26.5% (95% CI 27.8–37.4) and cigarette-smoking at 23.6%.A modest 23.4% of the treated patients with hypertension attained target blood pressure of <140/90 mmHg. Out of a paltry 12.5% of the statin-treated patients and others not actively treated, only 22.9% had LDL-Cholesterol of target <2.0 mmol/L.There were no obvious socio-demographic and clinical determinants of poor glycaemic control. However, old age above 50 yrs., longer duration with diabetes above 5 yrs. and advanced stages of CKD were significantly associated with hypertension. Female gender and age, statin non-use and socio-economic factor of employment were the significant determinants of high levels of serum LDL-cholesterol.

Conclusion

The majority of the study patients attending this government-funded health facility had high prevalence of cardiovascular risk factors that were inadequately controlled. Therefore patients with type 2 diabetes should be risk-stratified by their age, duration of diabetes and cardiovascular risk factor loading. Consequently, composite risk factor reduction strategies are needed in management of these patients to achieve the desired targets safely. This would be achieved through innovative care systems and modes of delivery which would translate into maximum benefit of primary cardiovascular disease prevention in those at high risk. It is a desirable quality objective to have a higher proportion of the patients who access care benefiting maximally more than the numbers we are achieving now.
  相似文献   
107.
108.
In rat pinealocytes, cytoplasmic alkalization causes protein kinase C (PKC) translocation, but the isozyme involved is not known. In this study, we investigated the effect of cytoplasmic alkalization on membrane-associated PKCalpha, delta, epsilon, and zeta, four isozymes present in the rat pineal gland. Treatment with NH(4)Cl, which had no effect on PKCzeta, caused a sustained increase in membrane-associated PKCalpha, delta, and epsilon that lasted for at least 60 min. The effect of NH(4)Cl on PKCalpha, delta, and epsilon was reduced by sodium propionate, an agent that counteracts the effect of NH(4)Cl on intracellular pH. Both sodium propionate and 5-(N,N-hexamethylene)amiloride (HMA), two treatments that abolished the effect of norepinephrine on cytoplasmic alkalization, also reduced norepinephrine-mediated increases in membrane-associated PKCalpha, delta, and epsilon. In contrast, these two treatments did not have an effect on the increase in membrane-associated PKC isozymes caused by 4beta-phorbol 12-myristate 13-acetate (PMA), an active phorbol ester, even though HMA was effective in abolishing PMA-mediated increases in intracellular pH. These results, apart from demonstrating that cytoplasmic alkalization by itself can cause translocation of PKCalpha, delta, and epsilon in rat pinealocytes, also indicate that the norepinephrine-stimulated cytoplasmic alkalization plays an important role in transducing signals from the adrenergic receptor to selective PKC isozymes. However, PKC translocation stimulated directly by PMA does not appear to be sensitive to changes in intracellular pH.  相似文献   
109.
Microdeletions and microduplications, not visible by routine chromosome analysis, are a major cause of human malformation and mental retardation. Novel high-resolution, whole-genome technologies can improve the diagnostic detection rate of these small chromosomal abnormalities. Array-based comparative genomic hybridization allows such a high-resolution screening by hybridizing differentially labeled test and reference DNAs to arrays consisting of thousands of genomic clones. In this study, we tested the diagnostic capacity of this technology using approximately 3,500 flourescent in situ hybridization-verified clones selected to cover the genome with an average of 1 clone per megabase (Mb). The sensitivity and specificity of the technology were tested in normal-versus-normal control experiments and through the screening of patients with known microdeletion syndromes. Subsequently, a series of 20 cytogenetically normal patients with mental retardation and dysmorphisms suggestive of a chromosomal abnormality were analyzed. In this series, three microdeletions and two microduplications were identified and validated. Two of these genomic changes were identified also in one of the parents, indicating that these are large-scale genomic polymorphisms. Deletions and duplications as small as 1 Mb could be reliably detected by our approach. The percentage of false-positive results was reduced to a minimum by use of a dye-swap-replicate analysis, all but eliminating the need for laborious validation experiments and facilitating implementation in a routine diagnostic setting. This high-resolution assay will facilitate the identification of novel genes involved in human mental retardation and/or malformation syndromes and will provide insight into the flexibility and plasticity of the human genome.  相似文献   
110.
Skeletal tissues develop either by intramembranous ossification, where bone is formed within a soft connective tissue, or by endochondral ossification. The latter proceeds via cartilage anlagen, which through hypertrophy, mineralization, and partial resorption ultimately provides scaffolding for bone formation. Here, we describe a novel and essential mechanism governing remodeling of unmineralized cartilage anlagen into membranous bone, as well as tendons and ligaments. Membrane-type 1 matrix metalloproteinase (MT1-MMP)-dependent dissolution of unmineralized cartilages, coupled with apoptosis of nonhypertrophic chondrocytes, mediates remodeling of these cartilages into other tissues. The MT1-MMP deficiency disrupts this process and uncouples apoptotic demise of chondrocytes and cartilage degradation, resulting in the persistence of "ghost" cartilages with adverse effects on skeletal integrity. Some cells entrapped in these ghost cartilages escape apoptosis, maintain DNA synthesis, and assume phenotypes normally found in the tissues replacing unmineralized cartilages. The coordinated apoptosis and matrix metalloproteinase-directed cartilage dissolution is akin to metamorphosis and may thus represent its evolutionary legacy in mammals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号