首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   546篇
  免费   22篇
  2022年   5篇
  2021年   7篇
  2020年   6篇
  2019年   7篇
  2018年   8篇
  2017年   12篇
  2016年   11篇
  2015年   15篇
  2014年   21篇
  2013年   54篇
  2012年   31篇
  2011年   27篇
  2010年   15篇
  2009年   14篇
  2008年   26篇
  2007年   28篇
  2006年   26篇
  2005年   29篇
  2004年   30篇
  2003年   25篇
  2002年   28篇
  2001年   9篇
  2000年   6篇
  1999年   4篇
  1998年   8篇
  1997年   5篇
  1996年   3篇
  1995年   4篇
  1994年   7篇
  1993年   4篇
  1992年   9篇
  1991年   9篇
  1990年   4篇
  1989年   6篇
  1988年   3篇
  1987年   4篇
  1986年   6篇
  1984年   3篇
  1983年   5篇
  1982年   4篇
  1981年   3篇
  1979年   6篇
  1978年   2篇
  1977年   3篇
  1974年   3篇
  1973年   3篇
  1972年   2篇
  1970年   5篇
  1969年   2篇
  1968年   2篇
排序方式: 共有568条查询结果,搜索用时 15 毫秒
151.
Inhibition of the accumulation of amyloid beta-peptide (Abeta) and the formation of beta-amyloid fibrils (fAbeta) from Abeta, as well as the destabilization of preformed fAbeta in the CNS would be attractive therapeutic targets for the treatment of Alzheimer's disease (AD). We previously reported that nordihydroguaiaretic acid (NDGA) and wine-related polyphenols inhibit fAbeta formation from Abeta(1-40) and Abeta(1-42) as well as destabilizing preformed fAbeta(1-40) and fAbeta(1-42) dose-dependently in vitro. Using fluorescence spectroscopic analysis with thioflavin T and electron microscopic studies, we examined the effects of polymeric polyphenol, tannic acid (TA) on the formation, extension, and destabilization of fAbeta(1-40) and fAbeta(1-42) at pH 7.5 at 37 degrees C in vitro. We next compared the anti-amyloidogenic activities of TA with myricetin, rifampicin, tetracycline, and NDGA. TA dose-dependently inhibited fAbeta formation from Abeta(1-40) and Abeta(1-42), as well as their extension. Moreover, it dose-dependently destabilized preformed fAbetas. The effective concentrations (EC50) of TA for the formation, extension and destabilization of fAbetas were in the order of 0-0.1 microM. Although the mechanism by which TA inhibits fAbeta formation from Abeta as well as destabilizes preformed fAbeta in vitro is still unclear, it could be a key molecule for the development of therapeutics for AD.  相似文献   
152.
153.
Cerebral deposition of amyloid beta-peptide (Abeta) in the brain is an invariant feature of Alzheimer's disease (AD). A consistent protective effect of wine consumption on AD has been documented by epidemiological studies. In the present study, we used fluorescence spectroscopy with thioflavin T and electron microscopy to examine the effects of wine-related polyphenols (myricetin, morin, quercetin, kaempferol (+)-catechin and (-)-epicatechin) on the formation, extension, and destabilization of beta-amyloid fibrils (fAbeta) at pH 7.5 at 37 degrees C in vitro. All examined polyphenols dose-dependently inhibited formation of fAbeta from fresh Abeta(1-40) and Abeta(1-42), as well as their extension. Moreover, these polyphenols dose-dependently destabilized preformed fAbetas. The overall activity of the molecules examined was in the order of: myricetin = morin = quercetin > kaempferol > (+)-catechin = (-)-epicatechin. The effective concentrations (EC50) of myricetin, morin and quercetin for the formation, extension and destabilization of fAbetas were in the order of 0.1-1 micro m. In cell culture experiments, myricetin-treated fAbeta were suggested to be less toxic than intact fAbeta, as demonstrated by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay. Although the mechanisms by which these polyphenols inhibit fAbeta formation from Abeta, and destabilize pre-formed fAbetain vitro are still unclear, polyphenols could be a key molecule for the development of preventives and therapeutics for AD.  相似文献   
154.
Human herpesvirus 7 (HHV-7), which belongs to the betaherpesvirus subfamily, infects mainly CD4+ T cells in vitro and infects children during infancy. After the primary infection, HHV-7 becomes latent. HHV-7 contains two genes (U12 and U51) that encode putative homologs of cellular G-protein-coupled receptors. To analyze the biological function of the U12 gene, we cloned the gene and expressed the U12 protein in cells. The U12 gene encoded a calcium-mobilizing receptor for the EBI1 ligand chemokine-macrophage inflammatory protein 3beta (ELC/MIP-3beta) but not for other chemokines, suggesting that the chemokine selectivity of the U12 gene product is distinct from that of the known mammalian chemokine receptors. These studies revealed that U12 activates distinct transmembrane signaling pathways that may mediate biological functions by binding with a beta-chemokine, ELC/MIP-3beta.  相似文献   
155.
Many free-swimming unicellular organisms show negative gravitaxis, i.e. tend to swim upward, although their specific densities are higher than the medium density. To obtain clues to the mechanism of this behavior, we examined how a mutation in motility or behavior affects the gravitaxis in Chlamydomonas. A phototaxis mutant, ptx3, deficient in membrane excitability showed weakened gravitaxis, whereas another phototaxis mutant, ptx1, deficient in regulation of flagellar dominance displayed normal gravitaxis. Two mutants that swim backwards only, mbo1 and mbo2, did not show any clear gravitaxis. We also isolated two novel mutants deficient in gravitaxis, gtx1 and gtx2. These mutants displayed normal motility and physical characteristics of cell body as assessed by the behavior of anesthetized cells. However, these cells were found to have defects in physiological responses involving membrane excitation. These observations are consistent with the idea that the gravitaxis in Chlamydomonas involves a physiological signal transduction system, which is at least partially independent of the system used for phototaxis.  相似文献   
156.
This is the first report on regulation of the isoamylase1 gene to modify the structure of amylopectin and properties of starch by using antisense technology in plants. The reduction of isoamylase1 protein by about 94% in rice endosperm changed amylopectin into a water-insoluble modified amylopectin and a water-soluble polyglucan (WSP). As compared with wild-type amylopectin, the modified amylopectin had more short chains with a degree of polymerization of 5-12, while their molecular sizes were similar. The WSP, which structurally resembled the phytoglycogen in isoamylase-deficient sugary-1 mutants, accounted for about 16% of the total alpha-polyglucans in antisense endosperm, and it was distributed throughout the whole endosperm unlike in sugary-1 mutant. The reduction of isoamylase activity markedly lowered the gelatinization temperature from 54 to 43 degrees C and the viscosity, and modified X-ray diffraction pattern and the granule morphology of the starch. The activity of pullulanase, the other type of starch debranching enzyme, in the antisense endosperm was similar to that in wild-type, whereas it is deficient in sugary-1 mutants. These results indicate that the isoamylase1 is essential for amylopectin biosynthesis in rice endosperm, and that alteration of the isoamylase activity is an effective means to modify the physicochemical properties and granular structure of starch.  相似文献   
157.
There was an ionic interaction between acidic polysaccharides (APS) and proteins at the pH range in which APS were negatively charged and proteins were positively charged, and in enzymes the interaction was detected as a change in the enzyme activity. At pH 4.7, acid phosphatase (pI, 5.4), alpha-glucosidase (pI, 5.7), and beta-glucosidase (pI, 7.3) were inhibited by APS to various extents. On the other hand, alpha-glucosidase and alkaline phosphatase (pI, 4.5) were not inhibited by APS at pH 6.8 and 9.8, respectively, most of these two enzymes being negatively charged at the respective pHs. Sulfated polysaccharides combined with hemoglobin (pI, 6.8 to approximately 7.0) by an ionic bond at pH 2 to make hemoglobin unsusceptible to proteolysis by pepsin, but polyuronides which were not charged at this pH did not affect hydrolysis of hemoglobin.  相似文献   
158.
Chronic inflammation is a risk factor for many human cancers, and nitric oxide (NO) produced in inflamed tissues has been proposed to cause DNA damage via nitrosation or oxidation of base moieties. Thus, NO-induced DNA damage could be relevant to carcinogenesis associated with chronic inflammation. In this report, we report a novel genotoxic mechanism of NO that involves DNA-protein cross-links (DPCs) induced by oxanine (Oxa), a major NO-induced guanine lesion. When a duplex DNA containing Oxa at the site-specific position was incubated with DNA-binding proteins such as histone, high mobility group (HMG) protein, and DNA glycosylases, DPCs were formed between Oxa and protein. The rate of DPC formation with DNA glycosylases was approximately two orders of magnitude higher than that with histone and HMG protein. Analysis of the reactivity of individual amino acids to Oxa suggested that DPC formation occurred between Oxa and side chains of lysine or arginine in the protein. A HeLa cell extract also gave rise to two major DPCs when incubated with DNA-containing Oxa. These results reveal a dual aspect of Oxa as causal damage of DPC formation and as a suicide substrate of DNA repair enzymes, both of which could pose a threat to the genetic and structural integrity of DNA, hence potentially leading to carcinogenesis.  相似文献   
159.
During the cell cycle of the yeast Saccharomyces cerevisiae, the actin cytoskeleton and the growth of cell surface are polarized, mediating bud emergence, bud growth, and cytokinesis. We identified CDC50 as a multicopy suppressor of the myo3 myo5-360 temperature-sensitive mutant, which is defective in organization of cortical actin patches. The cdc50 null mutant showed cold-sensitive cell cycle arrest with a small bud as reported previously. Cortical actin patches and Myo5p, which are normally localized to polarization sites, were depolarized in the cdc50 mutant. Furthermore, actin cables disappeared, and Bni1p and Gic1p, effectors of the Cdc42p small GTPase, were mislocalized in the cdc50 mutant. As predicted by its amino acid sequence, Cdc50p appears to be a transmembrane protein because it was solubilized from the membranes by detergent treatment. Cdc50p colocalized with Vps21p in endosomal compartments and was also localized to the class E compartment in the vps27 mutant. The cdc50 mutant showed defects in a late stage of endocytosis but not in the internalization step. It showed, however, only modest defects in vacuolar protein sorting. Our results indicate that Cdc50p is a novel endosomal protein that regulates polarized cell growth.  相似文献   
160.
Stomach cancer-associated protein-tyrosine phosphatase-1 (SAP-1), a transmembrane-type protein-tyrosine phosphatase, is thought to inhibit integrin signaling by mediating the dephosphorylation of focal adhesion-associated proteins. Adenovirus-mediated overexpression of wild-type SAP-1, but not that of a catalytically inactive mutant of this enzyme, has now been shown to induce apoptosis in NIH 3T3 fibroblasts. This effect of SAP-1 was dependent on cellular caspase activities and was preceded by inactivation of two serine-threonine protein kinases, Akt and integrin-linked kinase (ILK), both of which function downstream of phosphoinositide (PI) 3-kinase to promote cell survival. Coexpression of constitutively active forms of PI 3-kinase or Akt (which fully restored Akt and ILK activities) resulted in partial inhibition of SAP-1-induced cell death. Furthermore, expression of a dominant negative mutant of PI 3-kinase did not induce cell death as efficiently as did SAP-1, although this mutant inhibited Akt and ILK activities more effectively than did SAP-1. Overexpression of SAP-1 had no substantial effect on Ras activity. These results suggest that SAP-1 induces apoptotic cell death by at least two distinct mechanisms: inhibition of cell survival signaling mediated by PI 3-kinase, Akt, and ILK and activation of a caspase-dependent proapoptotic pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号