首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   544篇
  免费   22篇
  2022年   3篇
  2021年   7篇
  2020年   6篇
  2019年   7篇
  2018年   8篇
  2017年   12篇
  2016年   11篇
  2015年   15篇
  2014年   21篇
  2013年   54篇
  2012年   31篇
  2011年   27篇
  2010年   15篇
  2009年   14篇
  2008年   26篇
  2007年   28篇
  2006年   26篇
  2005年   29篇
  2004年   30篇
  2003年   25篇
  2002年   28篇
  2001年   9篇
  2000年   6篇
  1999年   4篇
  1998年   8篇
  1997年   5篇
  1996年   3篇
  1995年   4篇
  1994年   7篇
  1993年   4篇
  1992年   9篇
  1991年   9篇
  1990年   4篇
  1989年   6篇
  1988年   3篇
  1987年   4篇
  1986年   6篇
  1984年   3篇
  1983年   5篇
  1982年   4篇
  1981年   3篇
  1979年   6篇
  1978年   2篇
  1977年   3篇
  1974年   3篇
  1973年   3篇
  1972年   2篇
  1970年   5篇
  1969年   2篇
  1968年   2篇
排序方式: 共有566条查询结果,搜索用时 15 毫秒
101.
The oxidation of cysteine in mammalian cells occurs by two routes: a highly regulated direct oxidation pathway in which the first step is catalyzed by cysteine dioxygenase (CDO) and by desulfhydration-oxidation pathways in which the sulfur is released in a reduced oxidation state. To assess the effect of a lack of CDO on production of hydrogen sulfide (H2S) and thiosulfate (an intermediate in the oxidation of H2S to sulfate) and to explore the roles of both cystathionine γ-lyase (CTH) and cystathionine β-synthase (CBS) in cysteine desulfhydration by liver, we investigated the metabolism of cysteine in hepatocytes isolated from Cdo1-null and wild-type mice. Hepatocytes from Cdo1-null mice produced more H2S and thiosulfate than did hepatocytes from wild-type mice. The greater flux of cysteine through the cysteine desulfhydration reactions catalyzed by CTH and CBS in hepatocytes from Cdo1-null mice appeared to be the consequence of their higher cysteine levels, which were due to the lack of CDO and hence lack of catabolism of cysteine by the cysteinesulfinate-dependent pathways. Both CBS and CTH appeared to contribute substantially to cysteine desulfhydration, with estimates of 56 % by CBS and 44 % by CTH in hepatocytes from wild-type mice, and 63 % by CBS and 37 % by CTH in hepatocytes from Cdo1-null mice.  相似文献   
102.
103.
Hef is an archaeal protein that probably functions mainly in stalled replication fork repair. The presence of an unstructured region was predicted between the two distinct domains of the Hef protein. We analyzed the interdomain region of Thermococcus kodakarensis Hef and demonstrated its disordered structure by CD, NMR, and high speed atomic force microscopy (AFM). To investigate the functions of this intrinsically disordered region (IDR), we screened for proteins interacting with the IDR of Hef by a yeast two-hybrid method, and 10 candidate proteins were obtained. We found that PCNA1 and a RecJ-like protein specifically bind to the IDR in vitro. These results suggested that the Hef protein interacts with several different proteins that work together in the pathways downstream from stalled replication fork repair by converting the IDR structure depending on the partner protein.  相似文献   
104.
Cells actively regulate the macromolecular excluded volume of the cytoplasm to maintain the reciprocal fraction of free aqueous solution that is optimal for intracellular processes. However, the mechanisms whereby cells sense this critical parameter remain unclear. The mechanosensitive channel of small conductance (MscS channel), which is the major regulator of turgor in bacteria, mediates efflux of small osmolytes in response to increased membrane tension. At moderate sustained tensions produced by a decrease in external osmolarity, MscS undergoes slow adaptive inactivation; however, it inactivates abruptly in the presence of cytoplasmic crowding agents. To understand the mechanism underlying this rapid inactivation, we combined extrapolated and equilibrium molecular dynamics simulations with electrophysiological analyses of MscS mutants to explore possible transitions of MscS and generated models of the resting and inactivated states. Our models suggest that the coupling of the gate formed by TM3 helices to the peripheral TM1–TM2 pairs depends on the axial position of the core TM3 barrel relative to the TM1–TM2 shaft and the state of the associated hollow cytoplasmic domain (“cage”). They also indicate that the tension-driven inactivation transition separates the gate from the peripheral helices and promotes kinks in TM3s at G113 and that this conformation is stabilized by association of the TM3b segment with the β domain of the cage. We found that mutations destabilizing the TM3b–β interactions preclude inactivation and make the channel insensitive to crowding agents and voltage; mutations that strengthen this association result in a stable closed state and silent inactivation. Steered simulations showed that pressure exerted on the cage bottom in the inactivated state reduces the volume of the cage in the cytoplasm and at the same time increases the footprint of the transmembrane domain in the membrane, implying coupled sensitivity to both membrane tension and crowding pressure. The cage, therefore, provides feedback on the increasing crowding that disengages the gate and prevents excessive draining and condensation of the cytoplasm. We discuss the structural mechanics of cells surrounded by an elastic cell wall where this MscS-specific feedback mechanism may be necessary.  相似文献   
105.
Highly active mutant of NADPH-dependent acetoacetyl-CoA reductase (PhaB) was expressed in Nicotiana tabacum cv. Bright Yellow-2 cultured cells to produce poly(3-hydroxybutyrate) [P(3HB)]. The mutated PhaB increased P(3HB) content by three-fold over the control, indicating that the mutant was a versatile tool for P(3HB) production. Additionally, the PhaB-catalyzed reaction was suggested to be a rate-limiting step of P(3HB) biosynthesis in tobacco BY-2 cells.  相似文献   
106.
Sinusoidal cells in the rat liver were studied in vivo and in vitro using the original vital staining with lithium carmine, which has contributed much to the development of the concept of the reticulo-endothelial system. Immunohistochemical and electron-microscopic studies revealed that the dye-incorporating cells were sinusoidal endothelial cells, Kupffer cells, and monocytes. The endothelial cells took up much more dye than did the Kupffer cells and bulged largely into the sinusoidal lumen. Electron microscopy revealed that small particles of lithium carmine were associated with coated vesicles of endothelial cells and ruffled membranes of Kupffer cells. In the endothelial cells, these particles were present in various concentrations within vacuolated structures and condensed in the lysosomes forming large aggregates of lithium carmine lumps. These lumps showed crystalline structures, within which the size of the individual particle was up to 30 nm in width and 50 nm in length. A few endothelial cells containing abundant dye underwent degeneration, and some were taken up by Kupffer cells. Liver endothelial cells isolated from lithium carmine-administered rats endocytosed fluorescence-labeled collagen. Isolated endothelial cells from normal rat liver, when cultured with lithium carmine, did not take up any dye, and their endocytosis of formaldehyde-treated albumin was inhibited dose-dependently. We conclude that in the liver, endothelial cells, but not Kupffer cells, predominantly take up lithium carmine. Furthermore, we propose the existence of a generalized cell system based on its vital staining capacity.  相似文献   
107.
108.
109.
110.
Summary Localization of cationized ferritin (CF) particles in the process of CF-induced aggregation of rabbit platelets was investigated by electron microscopy. CF particles attached to the surface membrane of discoidal platelets immediately after the addition of CF. Some platelets were connected to each other through the CF particles located on their surfaces. At 30 s after the addition of CF, aggregation of platelets in round form was observed. During the time course of aggregation, CF particles moved to the interplatelet spaces. Also CF particles were found in the open canalicular system, the membrane component of which was stained with ruthenium red. On the other hand, CF particles were also found in ruthenium-red-negative vesicles in platelets. At 180 s after, CF particles containing vacuoles, which showed acid phosphatase activity, were observed in the aggregates. These results suggest that part of CF particles may be incorporated into the cytoplasma by endocytosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号