首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6039篇
  免费   286篇
  国内免费   7篇
  6332篇
  2023年   10篇
  2022年   42篇
  2021年   64篇
  2020年   31篇
  2019年   50篇
  2018年   90篇
  2017年   59篇
  2016年   126篇
  2015年   172篇
  2014年   203篇
  2013年   526篇
  2012年   353篇
  2011年   380篇
  2010年   228篇
  2009年   236篇
  2008年   391篇
  2007年   413篇
  2006年   368篇
  2005年   409篇
  2004年   389篇
  2003年   411篇
  2002年   326篇
  2001年   57篇
  2000年   31篇
  1999年   66篇
  1998年   87篇
  1997年   72篇
  1996年   63篇
  1995年   55篇
  1994年   56篇
  1993年   60篇
  1992年   44篇
  1991年   34篇
  1990年   36篇
  1989年   24篇
  1988年   28篇
  1987年   14篇
  1986年   17篇
  1985年   20篇
  1984年   20篇
  1983年   19篇
  1982年   31篇
  1981年   48篇
  1980年   28篇
  1979年   20篇
  1978年   13篇
  1977年   15篇
  1976年   14篇
  1975年   17篇
  1973年   12篇
排序方式: 共有6332条查询结果,搜索用时 15 毫秒
51.
Organic anion-transporting polypeptides (human, OATPs; other animals, Oatps; gene symbol, SLCO/Slco) form a transport protein superfamily that mediates the translocation of amphipathic substrates across the plasma membrane of animal cells. So far, OATPs/Oatps have been identified in human, rat and mouse tissues. In this study, we used bioinformatic tools to detect new members of the OATP/SLCO superfamily in nonmammalian species and to build models for the three-dimensional structure of OATPs/Oatps. New OATP/SLCO superfamily members, some of which form distinct novel families, were identified in chicken, zebrafish, frog, fruit fly and worm species. The lack of OATP/SLCO superfamily members in plants, yeast and bacteria suggests the emergence of an ancient Oatp protein in an early ancestor of the animal kingdom. Structural models were generated for the representative members OATP1B3 and OATP2B1 based on the known structures of the major facilitator superfamily of transport proteins. A model was also built for the large extracellular region between transmembrane helices 9 and 10, following the identification of a novel homology with the Kazal-type serine protease inhibitors. Along with the electrostatic potential and the conservation of key amino acid residues, we propose a common transport mechanism for all OATPs/Oatps, whereby substrates are translocated through a central, positively charged pore in a rocker-switch type of mechanism. Several amino acid residues were identified that may play crucial roles in the proposed transport mechanism. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users.  相似文献   
52.
Eotaxin-3/CCL26 is a functional ligand for CCR3 and abundantly produced by IL-4-/IL-13-stimulated vascular endothelial cells. CCL26 also functions as a natural antagonist for CCR1, CCR2, and CCR5. In this study, we report that CCL26 is yet a functional ligand for CX3CR1, the receptor for fractalkine/CX3CL1, which is expressed by CD16(+) NK cells, cytotoxic effector CD8(+) T cells, and CD14(low)CD16(high) monocytes. Albeit at relatively high concentrations, CCL26 induced calcium flux and chemotaxis in mouse L1.2 cells expressing human CX3CR1 but not mouse CX3CR1 and competed with CX3CL1 for binding to CX3CR1. In chemotaxis assays using human PBMCs, CCL26 attracted not only eosinophils but also CD16(+) NK cells, CD45RA(+)CD27(-)CD8(+) T cells, and CD14(low)CD16(high) monocytes. Intraperitoneal injection of CCL26 into mice rapidly recruited mouse eosinophils and intravenously transferred human CD16(+) NK cells into the peritoneal cavity. IL-4-stimulated HUVECs produced CCL26 and efficiently induced adhesion of cells expressing CX3CR1. Real-time PCR showed that skin lesions of psoriasis consistently contained CX3CL1 mRNA but not CCL26 mRNA, whereas those of atopic dermatitis contained CCL26 mRNA in all samples but CX3CL1 mRNA in only about half of the samples. Nevertheless, the skin lesions from both diseases consistently contained CX3CR1 mRNA at high levels. Thus, CCL26 may be partly responsible for the recruitment of cells expressing CX3CR1 in atopic dermatitis particularly when the expression of CX3CL1 is low. Collectively, CCL26 is another agonist for CX3CR1 and may play a dual role in allergic diseases by attracting eosinophils via CCR3 and killer lymphocytes and resident monocytes via CX3CR1.  相似文献   
53.
Ionotropic glutamate receptors mediate most excitatory neurotransmission in the central nervous system by opening ion channels upon the binding of glutamate. Despite the essential roles of glutamate in the control of reproduction and anterior pituitary hormone secretion, there is a limited understanding of how glutamate receptors control ovulation. Here we reveal the function of the ionotropic glutamate receptor AMPA-1 (GRIA1) in ovulation. Based on a genome-wide association study in Bos taurus, we found that ovulation rate is influenced by a variation in the N-terminal leucine/isoleucine/valine-binding protein (LIVBP) domain of GRIA1, in which serine is replaced by asparagine. GRIA1(Asn) has a weaker affinity to glutamate than GRIA1(Ser), both in Xenopus oocytes and in the membrane fraction of bovine brain. This single amino acid substitution leads to the decreased release of gonadotropin-releasing hormone (GnRH) in immortalized hypothalamic GT1-7 cells. Cows with GRIA1(Asn) have a slower luteinizing hormone (LH) surge than cows with GRIA1(Ser). In addition, cows with GRIA1(Asn) possess fewer immature ovarian follicles before superovulation and have a lower response to hormone treatment than cows with GRIA1(Ser). Our work identified that GRIA1 is a critical mediator of ovulation and that GRIA1 might be a useful target for reproductive therapy.  相似文献   
54.
The effects of apple intake on the fecal flora, water content, pH, and metabolic activities in eight healthy volunteers and the utilization of apple pectin in vitro were investigated. Although several isolates of Bifidobacterium, Lactobacillus, Enterococcus, and the Bacteroides fragilis group utilized apple pectin, most isolates of Escherichia coli, Collinsela aerofaciense, Eubacterium limosum, and Clostridium perfringens could not. When fecal samples from healthy adults were incubated in liquid broth with apple pectin present or absent, the numbers of Bifidobacterium and Lactobacillus in the former were higher than those in the later. After the intake of apples (2 apples a day for 2 weeks) by eight healthy adult humans, the number of bifidobacteria in feces increased (p < 0.05 on day 7 and p < 0.01 on day 14 of the intake period), and the numbers of Lactobacillus and Streptococcus including Enterococcus tended to increase. However, lecithinase-positive clostridia, including C. perfringens, decreased (p < 0.05), and Enterobacteriaceae and Pseudomonas tended to decrease. Moreover, the concentrations of fecal acetic acid tended to increase on apple intake. The fecal ammonia concentration showed a tendency to reduce and fecal sulfide decreased (p < 0.05) on apple intake. These findings indicate that apple consumption is related to an improved intestinal environment, and apple pectin is one of the effective apple components improving the fecal environment.  相似文献   
55.
56.
Death of murine T cells induced by extracellular ATP is mainly triggered by activation of purinergic P2X7 receptors (P2X7Rs). However, a link between P2X7Rs and pannexin1 (Panx1) channels, which are non-selective, has been recently demonstrated in other cell types. In this work, we characterized the expression and cellular distribution of pannexin family members (Panxs 1, 2 and 3) in isolated T cells. Panx1 was the main pannexin family member clearly detected in both helper (CD4+) and cytotoxic (CD8+) T cells, whereas low levels of Panx2 were found in both T-cell subsets. Using pharmacological and genetic approaches, Panx1 channels were found to mediate most ATP-induced ethidium uptake since this was drastically reduced by Panx1 channel blockers (10Panx1, Probenecid and low carbenoxolone concentration) and absent in T cells derived from Panx1−/− mice. Moreover, electrophysiological measurements in wild-type CD4+ cells treated with ATP unitary current events and pharmacological sensitivity compatible with Panx1 channels were found. In addition, ATP release from T cells treated with 4Br-A23187, a calcium ionophore, was completely blocked with inhibitors of both connexin hemichannels and Panx1 channels. Panx1 channel blockers drastically reduced the ATP-induced T-cell mortality, indicating that Panx1 channels mediate the ATP-induced T-cell death. However, mortality was not reduced in T cells of Panx1−/− mice, in which levels of P2X7Rs and ATP-induced intracellular free Ca2+ responses were enhanced suggesting that P2X7Rs take over Panx1 channels lose-function in mediating the onset of cell death induced by extracellular ATP.  相似文献   
57.
The mechanism of neurite growth is complicated, involving continuous cytoskeletal rearrangement and vesicular trafficking. Cytohesin-2 is a guanine nucleotide exchange factor for Arf6, an Arf family molecular switch protein, controlling cell morphological changes such as neuritogenesis. Here, we show that cytohesin-2 binds to a protein with a previously unknown function, CCDC120, which contains three coiled-coil domains, and is transported along neurites in differentiating N1E-115 cells. Transfection of the small interfering RNA (siRNA) specific for CCDC120 into cells inhibits neurite growth and Arf6 activation. When neurites start to extend, vesicles containing CCDC120 and cytohesin-2 are transported in an anterograde manner rather than a retrograde one. As neurites continue extension, anterograde vesicle transport decreases. CCDC120 knockdown inhibits cytohesin-2 localization into vesicles containing CCDC120 and diffuses cytohesin-2 in cytoplasmic regions, illustrating that CCDC120 determines cytohesin-2 localization in growing neurites. Reintroduction of the wild type CCDC120 construct into cells transfected with CCDC120 siRNA reverses blunted neurite growth and Arf6 activity, whereas the cytohesin-2-binding CC1 region-deficient CCDC120 construct does not. Thus, cytohesin-2 is transported along neurites by vesicles containing CCDC120, and it mediates neurite growth. These results suggest a mechanism by which guanine nucleotide exchange factor for Arf6 is transported to mediate neurite growth.  相似文献   
58.
59.
Ghrelin is a stomach hormone that acts as an endogenous ligand of orphan G-protein-coupled receptor. Ghrelin is a 28-amino acid peptide existing in two major forms: n-octanoyl-modified ghrelin, which possesses an n-octanoyl modification on serine-3 and des-acyl ghrelin. Fatty acid modification of ghrelin is essential for ghrelin-induced growth hormone release from the pituitary and appetite stimulation. This acyl-modification of ghrelin is catalysed by ghrelin-O-acyl transferase recently identified. Despite the number of innovative advancements in this field of research, there are still many aspects of ghrelin function and biosynthesis process that remain to be clarified. Here, we review the current understanding of the structure, regulation and function of ghrelin; this review is intended for researchers who will be involved in this field in the future.  相似文献   
60.
DNA methylation is a well-characterized epigenetic modification involved in gene regulation and transposon silencing in mammals. It mainly occurs on cytosines at CpG sites but methylation at non-CpG sites is frequently observed in embryonic stem cells, induced pluriotent stem cells, oocytes and the brain. The biological significance of non-CpG methylation is unknown. Here, we show that non-CpG methylation is also present in male germ cells, within and around B1 retrotransposon sequences interspersed in the mouse genome. It accumulates in mitotically arrested fetal prospermatogonia and reaches the highest level by birth in a Dnmt3l-dependent manner. The preferential site of non-CpG methylation is CpA, especially CpApG and CpApC. Although CpApG (and CpTpG) sites contain cytosines at symmetrical positions, hairpin-bisulfite sequencing reveals that they are hemimethylated, suggesting the absence of a template-dependent copying mechanism. Indeed, the level of non-CpG methylation decreases after the resumption of mitosis in the neonatal period, whereas that of CpG methylation does not. The cells eventually lose non-CpG methylation by the time they become spermatogonia. Our results show that non-CpG methylation accumulates in non-replicating, arrested cells but is not maintained in mitotically dividing cells during male germ-cell development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号