首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6903篇
  免费   319篇
  国内免费   7篇
  7229篇
  2022年   46篇
  2021年   69篇
  2020年   40篇
  2019年   53篇
  2018年   96篇
  2017年   71篇
  2016年   145篇
  2015年   198篇
  2014年   226篇
  2013年   559篇
  2012年   402篇
  2011年   423篇
  2010年   247篇
  2009年   265篇
  2008年   427篇
  2007年   452篇
  2006年   401篇
  2005年   447篇
  2004年   421篇
  2003年   449篇
  2002年   357篇
  2001年   93篇
  2000年   65篇
  1999年   88篇
  1998年   105篇
  1997年   80篇
  1996年   70篇
  1995年   61篇
  1994年   61篇
  1993年   68篇
  1992年   61篇
  1991年   47篇
  1990年   59篇
  1989年   33篇
  1988年   41篇
  1987年   19篇
  1986年   26篇
  1985年   34篇
  1984年   33篇
  1983年   31篇
  1982年   37篇
  1981年   52篇
  1980年   31篇
  1979年   28篇
  1978年   18篇
  1977年   21篇
  1976年   21篇
  1975年   20篇
  1974年   23篇
  1973年   19篇
排序方式: 共有7229条查询结果,搜索用时 15 毫秒
71.
The mechanism of neurite growth is complicated, involving continuous cytoskeletal rearrangement and vesicular trafficking. Cytohesin-2 is a guanine nucleotide exchange factor for Arf6, an Arf family molecular switch protein, controlling cell morphological changes such as neuritogenesis. Here, we show that cytohesin-2 binds to a protein with a previously unknown function, CCDC120, which contains three coiled-coil domains, and is transported along neurites in differentiating N1E-115 cells. Transfection of the small interfering RNA (siRNA) specific for CCDC120 into cells inhibits neurite growth and Arf6 activation. When neurites start to extend, vesicles containing CCDC120 and cytohesin-2 are transported in an anterograde manner rather than a retrograde one. As neurites continue extension, anterograde vesicle transport decreases. CCDC120 knockdown inhibits cytohesin-2 localization into vesicles containing CCDC120 and diffuses cytohesin-2 in cytoplasmic regions, illustrating that CCDC120 determines cytohesin-2 localization in growing neurites. Reintroduction of the wild type CCDC120 construct into cells transfected with CCDC120 siRNA reverses blunted neurite growth and Arf6 activity, whereas the cytohesin-2-binding CC1 region-deficient CCDC120 construct does not. Thus, cytohesin-2 is transported along neurites by vesicles containing CCDC120, and it mediates neurite growth. These results suggest a mechanism by which guanine nucleotide exchange factor for Arf6 is transported to mediate neurite growth.  相似文献   
72.
73.
Ghrelin is a stomach hormone that acts as an endogenous ligand of orphan G-protein-coupled receptor. Ghrelin is a 28-amino acid peptide existing in two major forms: n-octanoyl-modified ghrelin, which possesses an n-octanoyl modification on serine-3 and des-acyl ghrelin. Fatty acid modification of ghrelin is essential for ghrelin-induced growth hormone release from the pituitary and appetite stimulation. This acyl-modification of ghrelin is catalysed by ghrelin-O-acyl transferase recently identified. Despite the number of innovative advancements in this field of research, there are still many aspects of ghrelin function and biosynthesis process that remain to be clarified. Here, we review the current understanding of the structure, regulation and function of ghrelin; this review is intended for researchers who will be involved in this field in the future.  相似文献   
74.
Mouriri morleyii R. Goldenb. & Meirelles sp. nov. can be distinguished from the other species in the genus by its large stomatal crypts (the largest ones in the genus), columnar sclereids, tetramerous flowers and calyx closed in bud. This new species was collected on an inselberg in the state of Espírito Santo, Brazil.  相似文献   
75.
DNA methylation is a well-characterized epigenetic modification involved in gene regulation and transposon silencing in mammals. It mainly occurs on cytosines at CpG sites but methylation at non-CpG sites is frequently observed in embryonic stem cells, induced pluriotent stem cells, oocytes and the brain. The biological significance of non-CpG methylation is unknown. Here, we show that non-CpG methylation is also present in male germ cells, within and around B1 retrotransposon sequences interspersed in the mouse genome. It accumulates in mitotically arrested fetal prospermatogonia and reaches the highest level by birth in a Dnmt3l-dependent manner. The preferential site of non-CpG methylation is CpA, especially CpApG and CpApC. Although CpApG (and CpTpG) sites contain cytosines at symmetrical positions, hairpin-bisulfite sequencing reveals that they are hemimethylated, suggesting the absence of a template-dependent copying mechanism. Indeed, the level of non-CpG methylation decreases after the resumption of mitosis in the neonatal period, whereas that of CpG methylation does not. The cells eventually lose non-CpG methylation by the time they become spermatogonia. Our results show that non-CpG methylation accumulates in non-replicating, arrested cells but is not maintained in mitotically dividing cells during male germ-cell development.  相似文献   
76.
The tripeptide formyl–Met–Leu–Phe (fMLF) is a prototype of N-formylated chemotactic peptides for neutrophils owing to its ability to bind and activate the G protein-coupled formyl peptide receptor (FPR). Here, we developed an 18F-labeled fMLF derivative targeting FPR as a positron emission tomography (PET) imaging probe for bacterial infections. The study demonstrates that the fMLF derivative fMLFXYk(FB)k (X?=?Nle) has a high affinity for FPR (Ki?=?0.62?±?0.13?nM). The radiochemical yield and purity of [18F]fMLFXYk(FB)k were 16% and >96%, respectively. The in vivo biodistribution study showed that [18F]fMLFXYk(FB)k uptake was higher in the bacterial infected region than in the non-infected region. We observed considerably higher infection-to-muscle ratio of 4.6 at 60?min after [18F]fMLFXYk(FB)k injection. Furthermore, small-animal PET imaging studies suggested that [18F]fMLFXYk(FB)k uptake in the bacterial infected region was clearly visualized 60?min after injection.  相似文献   
77.
A major challenge in neuroscience is linking behavior to the collective activity of neural assemblies. Understanding of input-output relationships of neurons and circuits requires methods with the spatial selectivity and temporal resolution appropriate for mechanistic analysis of neural ensembles in the behaving animal, i.e. recording of representatively large samples of isolated single neurons. Ensemble monitoring of neuronal activity has progressed remarkably in the past decade in both small and large-brained animals, including human subjects. Multiple-site recording with silicon-based devices are particularly effective because of their scalability, small volume and geometric design. Here, we describe methods for recording multiple single neurons and local field potential in behaving rodents, using commercially available micro-machined silicon probes with custom-made accessory components. There are two basic options for interfacing silicon probes to preamplifiers: printed circuit boards and flexible cables. Probe supplying companies (http://www.neuronexustech.com/; http://www.sbmicrosystems.com/; http://www.acreo.se/) usually provide the bonding service and deliver probes bonded to printed circuit boards or flexible cables. Here, we describe the implantation of a 4-shank, 32-site probe attached to flexible polyimide cable, and mounted on a movable microdrive. Each step of the probe preparation, microdrive construction and surgery is illustrated so that the end user can easily replicate the process.  相似文献   
78.
Thioredoxin is ubiquitous and regulates various target proteins through disulfide bond reduction. We report the structure of thioredoxin (HvTrxh2 from barley) in a reaction intermediate complex with a protein substrate, barley alpha-amylase/subtilisin inhibitor (BASI). The crystal structure of this mixed disulfide shows a conserved hydrophobic motif in thioredoxin interacting with a sequence of residues from BASI through van der Waals contacts and backbone-backbone hydrogen bonds. The observed structural complementarity suggests that the recognition of features around protein disulfides plays a major role in the specificity and protein disulfide reductase activity of thioredoxin. This novel insight into the function of thioredoxin constitutes a basis for comprehensive understanding of its biological role. Moreover, comparison with structurally related proteins shows that thioredoxin shares a mechanism with glutaredoxin and glutathione transferase for correctly positioning substrate cysteine residues at the catalytic groups but possesses a unique structural element that allows recognition of protein disulfides.  相似文献   
79.
Production of d-lactic acid from rice bran, one of the most abundant agricultural by-products in Japan, is studied. Lactobacillus delbrueckii subsp. delbrueckii IFO 3202 and defatted rice bran powder after squeezing rice oil were used for the production. Since the rice bran contains polysaccharides as starch and cellulose, we coupled saccharification with amylase and cellulase to lactic acid fermentation. The indigenous bacteria in the rice bran produced racemic lactic acid in the saccharification at pH 6.0-6.8. Thus the pH was controlled at 5.0 to suppress the growth of the indigenous bacteria. L. delbrueckii IFO 3202 produced 28 kgm(-3) lactic acid from 100 kgm(-3) rice bran after 36 h at 37 degrees C. The yield based on the amount of sugars soluble after 36-h hydrolysis of the bran by amylase and cellulase (36 kgm(-3) from 100 kgm(-3) of the bran) was 78%. The optical purity of produced d-lactic acid was 95% e.e.  相似文献   
80.
The class I myosin genes are conserved in diverse organisms, and their gene products are involved in actin dynamics, endocytosis, and signal transduction. Drosophila melanogaster has three class I myosin genes, Myosin 31DF (Myo31DF), Myosin 61F (Myo61F), and Myosin 95E (Myo95E). Myo31DF, Myo61F, and Myo95E belong to the Myosin ID, Myosin IC, and Myosin IB families, respectively. Previous loss-of-function analyses of Myo31DF and Myo61F revealed important roles in left–right (LR) asymmetric development and enterocyte maintenance, respectively. However, it was difficult to elucidate their roles in vivo, because of potential redundant activities. Here we generated class I myosin double and triple mutants to address this issue. We found that the triple mutant was viable and fertile, indicating that all three class I myosins were dispensable for survival. A loss-of-function analysis revealed further that Myo31DF and Myo61F, but not Myo95E, had redundant functions in promoting the dextral LR asymmetric development of the male genitalia. Myo61F overexpression is known to antagonize the dextral activity of Myo31DF in various Drosophila organs. Thus, the LR-reversing activity of overexpressed Myo61F may not reflect its physiological function. The endogenous activity of Myo61F in promoting dextral LR asymmetric development was observed in the male genitalia, but not the embryonic gut, another LR asymmetric organ. Thus, Myo61F and Myo31DF, but not Myo95E, play tissue-specific, redundant roles in LR asymmetric development. Our studies also revealed differential colocalization of the class I myosins with filamentous (F)-actin in the brush border of intestinal enterocytes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号