首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2621篇
  免费   172篇
  国内免费   1篇
  2022年   11篇
  2021年   33篇
  2020年   22篇
  2019年   29篇
  2018年   38篇
  2017年   21篇
  2016年   56篇
  2015年   82篇
  2014年   98篇
  2013年   155篇
  2012年   171篇
  2011年   145篇
  2010年   105篇
  2009年   83篇
  2008年   164篇
  2007年   164篇
  2006年   126篇
  2005年   133篇
  2004年   139篇
  2003年   125篇
  2002年   150篇
  2001年   63篇
  2000年   77篇
  1999年   63篇
  1998年   31篇
  1997年   35篇
  1996年   25篇
  1995年   19篇
  1994年   25篇
  1993年   17篇
  1992年   32篇
  1991年   30篇
  1990年   32篇
  1989年   32篇
  1988年   24篇
  1987年   25篇
  1986年   29篇
  1985年   23篇
  1984年   19篇
  1983年   14篇
  1982年   16篇
  1981年   16篇
  1980年   11篇
  1979年   15篇
  1978年   12篇
  1977年   17篇
  1976年   7篇
  1975年   7篇
  1974年   5篇
  1972年   6篇
排序方式: 共有2794条查询结果,搜索用时 15 毫秒
121.
Quercetin (QCT) and isorhamnetin (ISO), natural flavonoids, were both shown to possess antifibrotic activity in in vivo and in vitro models of hepatic fibrosis. Although ISO is a direct metabolite of QCT differing by a methyl group, it has been reported to be absorbed more adequately and eliminated slower than QCT after oral administration. Our aim of the study was to investigate biological effect of mono-methylated QCT derivatives against fibrosis using rat hepatic stellate cells (HSC-T6). All test derivatives were synthesized from QCT. HSC-T6 cells were induced by TGFβ and treated with derivatives followed by cell proliferation assay, immunofluorescence staining of αSMA, and gene expression analysis of fibrosis markers. All compounds showed a dose- and time-dependent antiproliferation effect. ISO, 3-O-methylquercetin (3MQ), and rhamnetin (RHA) reduced αSMA mRNA; 3MQ prevented the augmentation of collagen I mRNA; and compounds, except azaleatin and 3MQ, reduced Timp1 mRNA expression in TGFβ-induced HSCs. In conclusion, each compound had singular effect against different features of fibrosis depending on the position of methyl group although the further mechanism of action of compounds during fibrosis development remains to be investigated. These findings suggest that antifibrotic effect of quercetin can be enhanced by adding methyl group on functionally important position.  相似文献   
122.
Mechanical stimulation is critical to both physiological and pathological states of living cells. Although a great deal of research has been done on biological and biochemical regulation of the behavior of bone marrow mesenchymal stem cells (MSCs), the influence of biomechanical factors on their behavior is still not fully documented. In this study, we investigated the modulation of mechanical stretch magnitude, frequency, and duration on the human marrow mesenchymal stem cells (hMSCs) proliferation by an in vitro model system using a mechanical stretch loading apparatus, and optimized the stretch regime for the proliferation of hMSCs. We applied 3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyl tetrasodium bromide (MTT) assay to estimate the overall proliferative effects of the stretch on hMSCs. We found that fibronectin coating increased adhesion to silicone chamber surface, however, it did not show significant effect on proliferation of hMSCs. A frequency of 1 Hz was more effective in stimulating hMSCs proliferation. At 1 Hz, 5% strain for 15, 30, 60 min, the significant increase of hMSCs proliferation was observed. Proliferation was enhanced at 1 Hz, 10% strain for 15, 30 min, while decreased for 60 min. At 1 Hz, 15% strain, 15 min stretch resulted in the decrease of proliferation, and 30 min and 60 min stretch showed an increased proliferation. Long time (12 and 24 h) strain application blocked the proliferation. These results indicate that mechanical stretch plays an important role in hMSCs growth and proliferation; an appropriate mechanical stretch regime could be a novel approach to promoting proliferation of hMSCs in vitro.  相似文献   
123.
Voluntary motor drive is an important central command that descends via the corticospinal tract to initiate muscle contraction. When electrical stimulation (ES) is applied to an antagonist or agonist muscle, it changes the agonist muscle’s representative motor cortex and thus its voluntary motor drive. In this study, we used a reaction time task to compare the effects of weak and strong ES of the antagonist or agonist muscle during the premotor period of a wrist extension. We recorded motor evoked potentials (MEPs) induced by transcranial magnetic stimulation (TMS) that was applied to the extensor carpi radialis (ECR; agonist) and flexor carpi radialis (FCR; antagonist). When stronger ES intensities were applied to the antagonist, the MEP control ratio in the ECR significantly increased during the premotor time. Furthermore, the MEP control ratio with stronger antagonist ES intensity was significantly larger than that in the agonist for the same ES intensity. In the FCR, the MEP control ratio was also significantly greater at the strong ES intensity than at the weak ES intensity. Furthermore, the MEP control ratio in the antagonist with a strong ES intensity was significantly larger than that in the agonist with the same ES intensity. These results suggest that agonist corticomotor excitability might be enhanced by ES of the antagonist, which in turn strongly activates the descending motor system in the preparation of agonist contraction.  相似文献   
124.
125.
Carbohydrate metabolism not only functions in supplying cellular energy but also has an important role in maintaining physiological homeostasis and in preventing oxidative damage caused by reactive oxygen species. Previously, we showed that arthropod embryonic cell lines have high tolerance to H2O2 exposure. Here, we describe that Rhipicephalus microplus tick embryonic cell line (BME26) employs an adaptive glucose metabolism mechanism that confers tolerance to hydrogen peroxide at concentrations too high for other organisms. This adaptive mechanism sustained by glucose metabolism remodeling promotes cell survival and redox balance in BME26 cell line after millimolar H2O2 exposure. The present work shows that this tick cell line could tolerate high H2O2 concentrations by initiating a carbohydrate-related adaptive response. We demonstrate that gluconeogenesis was induced as a compensation strategy that involved, among other molecules, the metabolic enzymes NADP-ICDH, G6PDH, and PEPCK. We also found that this phenomenon was coupled to glycogen accumulation and glucose uptake, supporting the pentose phosphate pathway to sustain NADPH production and leading to cell survival and proliferation. Our findings suggest that the described response is not atypical, being also observed in cancer cells, which highlights the importance of this model to all proliferative cells. We propose that these results will be useful in generating basic biological information to support the development of new strategies for disease treatment and parasite control.  相似文献   
126.
Effects of RU486 on the induction of aromatase by dexamethasone via glucocorticoid receptor were determined using cultured human skin fibroblasts. Competition of [3H]dexamethasone binding to the cytosol receptor was 7 times stronger with RU486 than with dexamethasone. The order of the strength of competition was RU486 greater than dexamethasone greater than betamethasone greater than prednisolone greater than hydrocortisone. RU486 abolished a specific 8.6 S [3H]dexamethasone binding peak in the cytosol, determined using a sucrose density gradient analysis. Dexamethasone markedly induced aromatase and this event was strongly suppressed by RU486, in a dose-dependent manner, in the cultured skin fibroblasts. A linear correlation between the strength of competition and the induction of aromatase of various glucocorticoids was observed. RU486 non-competitively inhibited aromatase induction by dexamethasone determined from a double reciprocal plot of aromatase activity, with respect to [3H]androstenedione concentration in the presence of RU486. These results show that RU486 is a peripheral noncompetitive antiglucocorticoid on aromatase induction by glucocorticoid in human skin fibroblasts and that aromatase induction is a good marker for the biological function of glucocorticoid receptor in human skin fibroblasts.  相似文献   
127.
Abstract The 16S rRNA gene sequences of Rickettsia tsutsugamushi and Rickettsia sibirica were determined by PCR and DNA sequencing. Phylogenetic analysis revealed that R. sibirica is positioned in a cluster of the genus Rickettsia with a similarity value of 98.1–99.6%, whereas R. tsutsugamushi is located apart from the cluster with a similarity value of 90.2–90.6%. This evidence suggests that R. tsutsugamushi should be excluded taxonomically from the genus Rickettsia . The phylogenetic classification of six antigenic variants in R. tsutsugamushi moderately reflected their antigenic relationship known in closely and distantly related strains.  相似文献   
128.
Humans are infected with two types of EBV (Type 1 (T1) and Type 2 (T2)) that differ substantially in their EBNA2 and EBNA 3A/B/C latency proteins and have different phenotypes in B cells. T1 EBV transforms B cells more efficiently than T2 EBV in vitro, and T2 EBV-infected B cells are more lytic. We previously showed that both increased NFATc1/c2 activity, and an NFAT-binding motif within the BZLF1 immediate-early promoter variant (Zp-V3) contained in all T2 strains, contribute to lytic infection in T2 EBV-infected B cells. Here we compare cellular and viral gene expression in early-passage lymphoblastoid cell lines (LCLs) infected with either T1 or T2 EBV strains. Using bulk RNA-seq, we show that T2 LCLs are readily distinguishable from T1 LCLs, with approximately 600 differentially expressed cellular genes. Gene Set Enrichment Analysis (GSEA) suggests that T2 LCLs have increased B-cell receptor (BCR) signaling, NFAT activation, and enhanced expression of epithelial-mesenchymal-transition-associated genes. T2 LCLs also have decreased RNA and protein expression of a cellular gene required for survival of T1 LCLs, IRF4. In addition to its essential role in plasma cell differentiation, IRF4 decreases BCR signaling. Knock-down of IRF4 in a T1 LCL (infected with the Zp-V3-containing Akata strain) induced lytic reactivation whereas over-expression of IRF4 in Burkitt lymphoma cells inhibited both NFATc1 and NFATc2 expression and lytic EBV reactivation. Single-cell RNA-seq confirmed that T2 LCLs have many more lytic cells compared to T1 LCLs and showed that lytically infected cells have both increased NFATc1, and decreased IRF4, compared to latently infected cells. These studies reveal numerous differences in cellular gene expression in B cells infected with T1 versus T2 EBV and suggest that decreased IRF4 contributes to both the latent and lytic phenotypes in cells with T2 EBV.  相似文献   
129.
130.
It has recently been shown that the A/A genotype at g.-23 of the insulin gene correlates with impaired insulin secretion in response to body weight gain in subjects of European descent. To examine whether there are single nucleotide polymorphisms (SNPs) in the insulin gene associated with type 2 diabetes, all exons with their flanking sequences for 113 Japanese type 2 diabetic patients and 99 nondiabetic control subjects were analyzed using PCR direct sequencing. We have only found g.-23T --> A, 806G --> C, 1128T --> C, and 1141A --> C, which have previously been reported in alpha (A-C-C-C) and beta (T-G-T-A) alleles. The allele frequency of -23T --> A in control Japanese subjects was 97.4%, whereas that in Europeans is about 30%. The A/A genotype was found in 94 of 99 Japanese subjects (94.9%) and the allele frequencies of 806G --> C, 1128T --> C, and 1141A --> C were all 96.5%. The estimated haplotype frequencies were (A-C-C-C) (96.0%), (T-G-T-A) (2.0%), (A-G-T-A) (1.5%), and (T-C-C-C) (0.5%). No association of these SNPs or haplotypes with type 2 diabetes was evident. Thus, the A/A genotype at the g.-23 of insulin gene was generally high in Japanese subjects, which could account for the fact that they typically secrete lower levels of insulin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号