首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1795篇
  免费   95篇
  国内免费   1篇
  1891篇
  2023年   6篇
  2022年   7篇
  2021年   20篇
  2020年   13篇
  2019年   25篇
  2018年   27篇
  2017年   18篇
  2016年   50篇
  2015年   73篇
  2014年   79篇
  2013年   116篇
  2012年   141篇
  2011年   104篇
  2010年   73篇
  2009年   63篇
  2008年   126篇
  2007年   118篇
  2006年   93篇
  2005年   99篇
  2004年   90篇
  2003年   93篇
  2002年   105篇
  2001年   21篇
  2000年   19篇
  1999年   17篇
  1998年   16篇
  1997年   16篇
  1996年   19篇
  1995年   14篇
  1994年   16篇
  1993年   8篇
  1992年   20篇
  1991年   18篇
  1990年   11篇
  1989年   22篇
  1988年   12篇
  1987年   11篇
  1986年   6篇
  1985年   4篇
  1984年   13篇
  1983年   15篇
  1982年   11篇
  1981年   15篇
  1980年   8篇
  1979年   4篇
  1977年   5篇
  1975年   5篇
  1974年   3篇
  1973年   4篇
  1972年   3篇
排序方式: 共有1891条查询结果,搜索用时 15 毫秒
51.
Mindfulness, an attentive non-judgmental focus on “here and now” experiences, has been incorporated into various cognitive behavioral therapy approaches and beneficial effects have been demonstrated. Recently, mindfulness has also been identified as a potentially effective emotion regulation strategy. On the other hand, emotion suppression, which refers to trying to avoid or escape from experiencing and being aware of one’s own emotions, has been identified as a potentially maladaptive strategy. Previous studies suggest that both strategies can decrease affective responses to emotional stimuli. They would, however, be expected to provide regulation through different top-down modulation systems. The present study was aimed at elucidating the different neural systems underlying emotion regulation via mindfulness and emotion suppression approaches. Twenty-one healthy participants used the two types of strategy in response to emotional visual stimuli while functional magnetic resonance imaging was conducted. Both strategies attenuated amygdala responses to emotional triggers, but the pathways to regulation differed across the two. A mindful approach appears to regulate amygdala functioning via functional connectivity from the medial prefrontal cortex, while suppression uses connectivity with other regions, including the dorsolateral prefrontal cortex. Thus, the two types of emotion regulation recruit different top-down modulation processes localized at prefrontal areas. These different pathways are discussed.  相似文献   
52.
Both extinct and extant crocodilians have repeatedly diversified in skull shape along a continuum, from narrow‐snouted to broad‐snouted phenotypes. These patterns occur with striking regularity, although it is currently unknown whether these trends also apply to microevolutionary divergence during population differentiation or the early stages of speciation. Assessing patterns of intraspecific variation within a single taxon can potentially provide insight into the processes of macroevolutionary differentiation. For example, high levels of intraspecific variation along a narrow‐broad axis would be consistent with the view that cranial shapes can show predictable patterns of differentiation on relatively short timescales, and potentially scale up to explain broader macroevolutionary patterns. In the present study, we use geometric morphometric methods to characterize intraspecific cranial shape variation among groups within a single, widely distributed clade, Caiman crocodilus. We show that C. crocodilus skulls vary along a narrow/broad‐snouted continuum, with different subspecies strongly clustered at distinct ends of the continuum. We quantitatively compare these microevolutionary trends with patterns of diversity at macroevolutionary scales (among all extant crocodilians). We find that morphological differences among the subspecies of C. crocodilus parallel the patterns of morphological differentiation across extant crocodilians, with the primary axes of morphological diversity being highly correlated across the two scales. We find intraspecific cranial shape variation within C. crocodilus to span variation characterized by more than half of living species. We show the main axis of intraspecific phenotypic variation to align with the principal direction of macroevolutionary diversification in crocodilian cranial shape, suggesting that mechanisms of microevolutionary divergence within species may also explain broader patterns of diversification at higher taxonomic levels.  相似文献   
53.
TRIC channel subtypes, namely TRIC-A and TRIC-B, are intracellular monovalent cation channels postulated to mediate counter-ion movements facilitating physiological Ca(2+) release from internal stores. Tric-a-knockout mice developed hypertension during the daytime due to enhanced myogenic tone in resistance arteries. There are two Ca(2+) release mechanisms in vascular smooth muscle cells (VSMCs); incidental opening of ryanodine receptors (RyRs) generates local Ca(2+) sparks to induce hyperpolarization, while agonist-induced activation of inositol trisphosphate receptors (IP(3)Rs) evokes global Ca(2+) transients causing contraction. Tric-a gene ablation inhibited RyR-mediated hyperpolarization signaling to stimulate voltage-dependent Ca(2+) influx, and adversely enhanced IP(3)R-mediated Ca(2+) transients by overloading Ca(2+) stores in VSMCs. Moreover, association analysis identified single-nucleotide polymorphisms (SNPs) around the human TRIC-A gene that increase hypertension risk and restrict the efficiency of antihypertensive drugs. Therefore, TRIC-A channels contribute to maintaining blood pressure, while TRIC-A SNPs could provide biomarkers for constitutional diagnosis and personalized medical treatment of essential hypertension.  相似文献   
54.
Abstract: Myelin gene expression was investigated in the immortalized S16 Schwann cell line grown in the presence and absence of serum and at different densities. Protein expression was monitored by western blotting, and message levels were determined by RNase protection assays. To study cell proliferation rates at different cell densities and serum conditions. [3H]thymidine uptake assays and cell counts were performed. Although serum deprivation decreased cell proliferation as expected, the proliferation of S16 cells was unchanged or slightly increased at high density under the conditions of our experiments in either serum-containing or serum-free medium. This increased cell division at high density appeared to be due to greater release of an autocrine growth factor to the medium by dense cell populations. For both sparse and dense cells, substantially more P0 glycoprotein (P0) and myelin-associated glycoprotein (MAG) per milligram of total cellular protein were expressed when the cells were proliferating slowly in defined medium in comparison with more rapidly proliferating cells in serum-containing medium. Furthermore, in both serum-containing and defined media, dense cell populations expressed more MAG and P0 than sparse ones. P0 mRNA and MAG mRNA levels generally paralleled protein levels. The level of mRNA for peripheral myelin protein-22 (PMP-22) was also increased at high cell density but did not change much when proliferation was decreased by serum deprivation. PMP-22 protein was not detected under any of the growth conditions. The changes in expression of these genes with growth conditions may be specific for myelin proteins, because the expression of a nonmyelin glycoprotein, L1, remained constant. The level of cyclic AMP in the cells did not change with the different growth conditions tested. The results indicate that the S16 Schwann cell line mimics primary or secondary Schwann cells by down-regulating myelin gene expression when it proliferates more rapidly in the presence of serum. Furthermore, in both the presence and absence of serum, there was greater expression of myelin genes at high cell density that was not associated with a decreased proliferative rate. Because evidence for a role of secretory factors in affecting myelin gene expression was not obtained by treating sparse S16 cells with medium conditioned by dense S16 cells, the results suggest that the higher expression of myelin genes at high density may be mediated by cell-to-cell contact.  相似文献   
55.
The denaturation of recombinant horse L-chain apoferritin (rLF), which is composed of 24 L-chain subunits, in acidic solution was studied. Using two rLF mutants, lacking four (Fer4) or eight (Fer8) N-terminal amino acid residues, the effect of N-terminal residues on the protein's stability was investigated. Of the two mutants and wild-type rLF, the tertiary and secondary structures of Fer8 were found to be most sensitive to an acidic environment. The Fer8 protein dissociated easily into subunit dimers at or below pH 2.0. Comparing the crystal structures of the mutant proteins, deletion of the N-terminal residues was found to result in fewer inter- and intra-subunit hydrogen bonds. The loss of these bonds is assumed to be responsible for lower endurance against acidic denaturation in N-terminus-deleted mutants. These results indicated that the inter- and intra-subunit hydrogen bonds of N-terminal residues affect the denaturation, especially oligomer formation of apoferritin subunits and will be of use in designing ferritin-based nanodevices.  相似文献   
56.
The genomic RNA of encephalomyocarditis virus (EMCV) encodes a single polyprotein, and the primary scission of the polyprotein occurs between nonstructural proteins 2A and 2B by an unknown mechanism. To gain insight into the mechanism of 2A-2B processing, we first translated the 2A-2B region in vitro with eukaryotic and prokaryotic translation systems. The 2A-2B processing occurred only in the eukaryotic systems, not in the prokaryotic systems, and the unprocessed 2A-2B protein synthesized by a prokaryotic system remained uncleaved when incubated with a eukaryotic cell extract. These results suggest that 2A-2B processing is a eukaryote-specific, co-translational event. To define the translation factors required for 2A-2B processing, we constituted a protein synthesis system with eukaryotic elongation factors 1 and 2, eukaryotic release factors 1 and 3 (eRF1 and eRF3), aminoacyl-tRNA synthetases, tRNAs, ribosome subunits, and a plasmid template that included the hepatitis C virus internal ribosome entry site. We successfully reproduced 2A-2B processing in the reconstituted system even without eRFs. Our results indicate that this unusual event occurs in the elongation phase of translation.  相似文献   
57.

Background

Transplantation of mononuclear cells (MNCs) has previously been tested as a method to induce therapeutic angiogenesis to treat limb ischemia in clinical trials. Non-invasive high resolution imaging is required to track the cells and evaluate clinical relevance after cell transplantation. The hypothesis that MRI can provide in vivo detection and long-term observation of MNCs labeled with manganese contrast-agent was investigated in ischemic rat legs.

Methods and Findings

The Mn-labeled MNCs were evaluated using 7-tesla high-field magnetic resonance imaging (MRI). Intramuscular transplanted Mn-labeled MNCs were visualized with MRI for at least 7 and up to 21 days after transplantation in the ischemic leg. The distribution of Mn-labeled MNCs was similar to that of 111In-labeled MNCs measured with single-photon emission computed tomography (SPECT) and DiI-dyed MNCs with fluorescence microscopy. In addition, at 1–2 days after transplantation the volume of the site injected with intact Mn-labeled MNCs was significantly larger than that injected with dead MNCs, although the dead Mn-labeled MNCs were also found for approximately 2 weeks in the ischemic legs. The area covered by CD31-positive cells (as a marker of capillary endothelial cells) in the intact Mn-MNCs implanted site at 43 days was significantly larger than that at a site implanted with dead Mn-MNCs.

Conclusions

The present Mn-enhanced MRI method enabled visualization of the transplanted area with a 150–175 µm in-plane spatial resolution and allowed the migration of labeled-MNCs to be observed for long periods in the same subject. After further optimization, MRI-based Mn-enhanced cell-tracking could be a useful technique for evaluation of cell therapy both in research and clinical applications.  相似文献   
58.
In an attempt to detect differences in the thermal effect of infrared irradiation of different wavelengths, transient sweating response to infrared irradiation in various spectral regions was examined. In Series 1, the ventral or dorsal surface of the nude subject was irradiated repetitively for a period of 4 min (2 min on, 2 min off) by each of three kinds of infrared heaters with main emissivity in near-infrared (NIR; 0.7–2.8 m), intermediate-infrared (MIR; 1.5–5.8 m), and far-infrared (FIR; 2.8–25 m) regions. The sweating response on a non-irradiated area tended to be the greatest with MIR, while the magnitude of the sweating response on the irradiated area showed no consistent differences among various wavelengths. The results infer that MIR stimulated cutaneous thomoreceptors most effectively, while its direct effect on local sweat gland activity was minimal. In Series 2, the effects of 9–12 min irradiations in more restricted ranges of wavelength were compared by the combination of the three kinds of heaters with filters (translucent to wavelength ranges of 1.3–2.7, 2.7–3.5, 3.6–8.0 m, respectively). The sweating response on a remote area was predominantly greater with the range of 2.7–3.5 m than with the other wavelength ranges, while the local effect on sweating was minimal with this range. The results of Series 2 reinforce those of Series 1, indicating that the degree of stimulation of cutaneous thermoreceptors and of direct thermal effect on sweat gland activity differ with spectral regions incident on the skin, thus affecting local and remote effects on the sweating response.  相似文献   
59.
Leukocyte extravasation is an important step of inflammation, in which integrins have been demonstrated to play an essential role by mediating the interaction of leukocytes with the vascular endothelium and the subendothelial extracellular matrix. Previously, we identified an integrin-linked kinase (ILK)-binding protein affixin (beta-parvin), which links initial integrin signals to rapid actin reorganization, and thus plays critical roles in fibroblast migration. In this study, we demonstrate that gamma-parvin, one of three mammalian parvin family members, is specifically expressed in several lymphoid and monocytic cell lines in a complementary manner to affixin. Like affixin, gamma-parvin directly associates with ILK through its CH2 domain and colocalizes with ILK at focal adhesions as well as the leading edge of PMA-stimulated U937 cells plated on fibronectin. The overexpression of the C-terminal fragment containing CH2 domain or the depletion of gamma-parvin by RNA interference inhibits the substrate adhesion of MCP-1-stimulated U937 cells and the spreading of PMA-stimulated U937 cells on fibronectin. Interestingly, the overexpression of the CH2 fragment or the gamma-parvin RNA interference also disrupts the asymmetric distribution of PTEN and F-actin observed at the very early stage of cell spreading, suggesting that the ILK-gamma-parvin complex is essential for the establishment of cell polarity required for leukocyte migration. Taken together with the results that gamma-parvin could form a complex with some important cytoskeletal proteins, such as alphaPIX, alpha-actinin, and paxillin as demonstrated for affixin and actopaxin (alpha-parvin), the results in this study suggest that the ILK-gamma-parvin complex is critically involved in the initial integrin signaling for leukocyte migration.  相似文献   
60.
Superoxide dismutase (SOD) is supposed to be an effective agent for neutrophil-mediated inflammation in the area of critical medicine. We investigated the involvement of SOD in the regulation of neutrophil apoptosis. Exogenously added SOD effectively induced neutrophil apoptosis, and the fluorescence patterns determined using annexin-V and the 7-AAD were similar to those seen in Fas-mediated neutrophil apoptosis. Neutrophils are short-lived leukocytes that need to be removed safely by apoptosis. The clearance of apoptotic neutrophils from sites of inflammation is a crucial determinant of the resolution of inflammation. Catalase inhibited the neutrophil apoptosis and caspase-3 activation. Spontaneous apoptosis, hydrogen peroxide and anti-Fas antibody-induced apoptosis of neutrophils were accelerated in Down's syndrome patients, in whom the SOD gene is overexpressed. Hydrogen peroxide was thought to be a possible major mediator of ROS-induced neutrophil apoptosis in caspase-dependent manner. Neutrophil apoptosis represents a crucial step in the mechanism governing the resolution of inflammation and has been suggested as a possible target for the control of neutrophil-mediated tissue injury. SOD may be a potential inhibitory mediator of neutrophil-mediated inflammation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号