首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1465篇
  免费   71篇
  国内免费   1篇
  2023年   6篇
  2022年   5篇
  2021年   19篇
  2020年   13篇
  2019年   22篇
  2018年   24篇
  2017年   15篇
  2016年   41篇
  2015年   60篇
  2014年   66篇
  2013年   97篇
  2012年   122篇
  2011年   91篇
  2010年   62篇
  2009年   47篇
  2008年   116篇
  2007年   98篇
  2006年   71篇
  2005年   80篇
  2004年   85篇
  2003年   81篇
  2002年   94篇
  2001年   14篇
  2000年   11篇
  1999年   10篇
  1998年   13篇
  1997年   14篇
  1996年   16篇
  1995年   8篇
  1994年   12篇
  1993年   8篇
  1992年   7篇
  1991年   7篇
  1990年   6篇
  1989年   4篇
  1988年   3篇
  1987年   4篇
  1986年   4篇
  1985年   3篇
  1984年   10篇
  1983年   12篇
  1982年   9篇
  1981年   12篇
  1980年   6篇
  1979年   3篇
  1978年   3篇
  1977年   5篇
  1976年   3篇
  1975年   5篇
  1974年   3篇
排序方式: 共有1537条查询结果,搜索用时 171 毫秒
121.
Gao  Xiang  Uno  Kenichi  Sarr  Papa Saliou  Yoshihashi  Tadashi  Zhu  Yiyong  Subbarao  Guntur Venkata 《Plant and Soil》2022,477(1-2):793-805
Plant and Soil - Rapid nitrification leads to loss of nitrogen (N) fertilizer in agricultural systems. Plant produced/derived biological nitrification inhibitors (BNIs) are an effective...  相似文献   
122.
Journal of Applied Phycology - Microalgae, Botryococcus braunii in particular, have received increasing interest owing to their potential as biofuel sources. Although the fertilizer components...  相似文献   
123.
Adenosylcobalamin-dependent isomerases catalyze carbon skeleton rearrangements using radical chemistry. We have recently demonstrated that an isobutyryl-CoA mutase variant, IcmF, a member of this enzyme family that catalyzes the interconversion of isobutyryl-CoA and n-butyryl-CoA also catalyzes the interconversion between isovaleryl-CoA and pivalyl-CoA, albeit with low efficiency and high susceptibility to inactivation. Given the biotechnological potential of the isovaleryl-CoA/pivalyl-CoA mutase (PCM) reaction, we initially attempted to engineer IcmF to be a more proficient PCM by targeting two active site residues predicted based on sequence alignments and crystal structures, to be key to substrate selectivity. Of the eight mutants tested, the F598A mutation was the most robust, resulting in an ∼17-fold increase in the catalytic efficiency of the PCM activity and a concomitant ∼240-fold decrease in the isobutyryl-CoA mutase activity compared with wild-type IcmF. Hence, mutation of a single residue in IcmF tuned substrate specificity yielding an ∼4000-fold increase in the specificity for an unnatural substrate. However, the F598A mutant was even more susceptible to inactivation than wild-type IcmF. To circumvent this limitation, we used bioinformatics analysis to identify an authentic PCM in genomic databases. Cloning and expression of the putative AdoCbl-dependent PCM with an α2β2 heterotetrameric organization similar to that of isobutyryl-CoA mutase and a recently characterized archaeal methylmalonyl-CoA mutase, allowed demonstration of its robust PCM activity. To simplify kinetic analysis and handling, a variant PCM-F was generated in which the αβ subunits were fused into a single polypeptide via a short 11-amino acid linker. The fusion protein, PCM-F, retained high PCM activity and like PCM, was resistant to inactivation. Neither PCM nor PCM-F displayed detectable isobutyryl-CoA mutase activity, demonstrating that PCM represents a novel 5′-deoxyadenosylcobalamin-dependent acyl-CoA mutase. The newly discovered PCM and the derivative PCM-F, have potential applications in bioremediation of pivalic acid found in sludge, in stereospecific synthesis of C5 carboxylic acids and alcohols, and in the production of potential commodity and specialty chemicals.  相似文献   
124.
Both extinct and extant crocodilians have repeatedly diversified in skull shape along a continuum, from narrow‐snouted to broad‐snouted phenotypes. These patterns occur with striking regularity, although it is currently unknown whether these trends also apply to microevolutionary divergence during population differentiation or the early stages of speciation. Assessing patterns of intraspecific variation within a single taxon can potentially provide insight into the processes of macroevolutionary differentiation. For example, high levels of intraspecific variation along a narrow‐broad axis would be consistent with the view that cranial shapes can show predictable patterns of differentiation on relatively short timescales, and potentially scale up to explain broader macroevolutionary patterns. In the present study, we use geometric morphometric methods to characterize intraspecific cranial shape variation among groups within a single, widely distributed clade, Caiman crocodilus. We show that C. crocodilus skulls vary along a narrow/broad‐snouted continuum, with different subspecies strongly clustered at distinct ends of the continuum. We quantitatively compare these microevolutionary trends with patterns of diversity at macroevolutionary scales (among all extant crocodilians). We find that morphological differences among the subspecies of C. crocodilus parallel the patterns of morphological differentiation across extant crocodilians, with the primary axes of morphological diversity being highly correlated across the two scales. We find intraspecific cranial shape variation within C. crocodilus to span variation characterized by more than half of living species. We show the main axis of intraspecific phenotypic variation to align with the principal direction of macroevolutionary diversification in crocodilian cranial shape, suggesting that mechanisms of microevolutionary divergence within species may also explain broader patterns of diversification at higher taxonomic levels.  相似文献   
125.
Arabidopsis thaliana calmodulin binding protein 60g (CBP60g) contributes to production of salicylic acid (SA) in response to recognition of microbe‐associated molecular patterns (MAMPs) such as flg22, a fragment of bacterial flagellin. Calmodulin binding is required for the function of CBP60g in limiting growth of the bacterial pathogen Pseudomonas syringae pv. maculicola (Pma) ES4326 and activation of SA synthesis. Here, we describe a closely related protein, SARD1. Unlike CBP60g, SARD1 does not bind calmodulin. Growth of Pma ES4326 is enhanced in sard1 mutants. In cbp60g sard1 double mutants, growth of Pma ES4326 is greatly enhanced, and SA levels and expression of PR‐1 and SID2 are dramatically reduced. Expression profiling placed the CBP60g/SARD1 node between the PAD4/EDS1 and SA nodes in the defense signaling network, and indicated that CBP60g and SARD1 affect defense responses in addition to SA production. A DNA motif bound by CBP60g and SARD1, GAAATTT, was significantly over‐represented in promoters of CBP60g/SARD1‐dependent genes, suggesting that expression of these genes is modulated by CBP60g/SARD1 binding. Gene expression patterns showed a stronger effect of cbp60g mutations soon after activation of a defense response, and a stronger effect of sard1 mutations at later times. The results are consistent with a model in which CBP60g and SARD1 comprise a partially redundant protein pair that is required for activation of SA production as well as other defense responses, with CBP60g playing a more important role early during the defense response, and SARD1 to playing a more important role later.  相似文献   
126.
Plants possess two distinct types of immune receptor. The first type, pattern recognition receptors (PRRs), recognizes microbe-associated molecular patterns (MAMPs) and initiates pattern-triggered immunity (PTI) on recognition. FLS2 is a PRR, which recognizes a part of bacterial flagellin. The second type, resistance (R) proteins, recognizes pathogen effectors and initiates effector-triggered immunity (ETI) on recognition. RPM1, RPS2 and RPS5 are R proteins. Here, we provide evidence that FLS2 is physically associated with all three R proteins. Our findings suggest that signalling interactions occur between PTI and ETI at very early stages and/or that FLS2 forms a PTI signalling complex, some components of which are guarded by R proteins.  相似文献   
127.
Bioluminescent fungi are widely distributed on land and most belong to the class Basidomycetes. Light of about 530 nm wavelength maximum is emitted continuously. The molecular basis for the light‐emitting process remains unclear. We investigated the characteristics of the bioluminescence using cultivated fruiting bodies of M. chlorophos. Only fresh fruiting bodies exhibited long‐lasting light emission; rapid decay of light emission was observed with frozen and freeze‐dried samples. Freeze‐dried samples can be stored at room temperature under dry conditions and may be useful for the isolation of luciferin. The light emission of the fresh fruiting bodies was maintained in various buffers at varying pH; it could be stopped with pH 4 acetate buffer and could be recovered at pH 6. The isolation of luciferin from the fresh fruiting bodies might be possible by the control of buffer pH. The effect of temperature on the light emission of fruiting bodies indicated that bioluminescence in M. chlorophos may involve enzymatic reaction(s). The solubilization of bioluminescent components from the fruiting bodies could not be achieved with various surfactants. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
128.
Gall‐forming insects are commonly highly host‐specific, and galling species once thought to be oligo‐ or polyphagous are often found to represent a complex of host‐specific races or cryptic species. A recent DNA barcoding study documented that an unidentified species of the genus Adelges is a gall‐former associated with four spruce species (Picea bicolor, P. koyamai, P. maximowiczii, P. polita) as the primary hosts, with little genetic differentiation among insects on different host species. In this study, we investigated the morphology of this galling adelgid to determine its taxonomic identity. Morphological inspection of insects collected from three of the spruce species confirmed that this adelgid is a single galling species, and is identified as Adelges (Sacchiphantes) kitamiensis, which was previously known only from the secondary host. We described the gallicola adults of this species, as well as the first‐instar exules which are the offspring of gallicolae. Finally, we verified the taxonomic identity of this species and discuss its life cycle and host distribution.  相似文献   
129.
130.
Submerged batch cultures of Aspergillus kawachii grown on indigestible dextrin were investigated for potential improvements in glucoamylase (GA) production. In flask culture, specific GA productivities per dry weight biomass using dextrin and indigestible dextrin were 11.0 and 56.1 mU/mg-DW, respectively. Indigestible dextrin was a poor substrate for enzymatic hydrolysis. Rates of glucose formation from dextrin and indigestible dextrin by enzymatic hydrolysis were 0.477 and 0.100 mg-glucose/ml/h, respectively. For this reason, residual glucose concentrations in batch cultures grown on indigestible dextrin remained below 1.32 mg/ml where glucose-limiting conditions were easily maintained. Batch culture using indigestible dextrin had the same residual glucose profile as dextrin fed-batch culture, and nearly the same GA activity was obtained after 42.5 h of growth. However, between 42.5 and 66 h, the GA production rate of the indigestible dextrin batch culture (11.5 mU/ml/h) was higher than that of the dextrin fed-batch culture (6.5 mU/ml/h). During this period, a high amount of residual maltooligosaccharide was detected in the culture supernatant grown on indigestible dextrin. The high GA productivity observed in the indigestible dextrin batch culture may have resulted from the absence of glucose and the simultaneous presence of maltooligosaccharides throughout growth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号