首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   2篇
  2021年   3篇
  2016年   1篇
  2015年   4篇
  2014年   4篇
  2013年   3篇
  2012年   4篇
  2011年   2篇
  2010年   3篇
  2009年   1篇
  2007年   2篇
  2006年   3篇
  2003年   2篇
  2002年   1篇
  1994年   1篇
排序方式: 共有34条查询结果,搜索用时 15 毫秒
11.
12.
13.
Jiang K  Ballinger T  Li D  Zhang S  Feldman L 《Plant physiology》2006,140(3):1118-1125
Mitochondria in the oxidizing environment of the maize (Zea mays) root quiescent center (QC) are altered in function, but otherwise structurally normal. Compared to mitochondria in the adjacent, rapidly dividing cells of the proximal root tissues, mitochondria in the QC show marked reductions in the activities of tricarboxylic acid cycle enzymes. Pyruvate dehydrogenase activity was not detected in the QC. Use of several mitochondrial membrane potential (DeltaPsi(m)) sensing probes indicated a depolarization of the mitochondrial membrane in the QC, which suggests a reduction in the capacity of QC mitochondria to generate ATP and NADH. We postulate that modifications of mitochondrial function are central to the establishment and maintenance of the QC.  相似文献   
14.
15.
Aspects of manganese metabolism during normal and acidogenic growth of Aspergillus niger were explored. Arginase from this fungus was a Mn[II]-enzyme. The contribution of the arginase protein towards A. niger manganese metabolism was investigated using arginase knockout (D-42) and arginase over-expressing (ΔXCA-29) strains of A. niger NCIM 565. The Mn[II] contents of various mycelial fractions were found in the order: D-42 strain < parent strain < ΔXCA-29 strain. While the soluble fraction forms 60 % of the total mycelial Mn[II] content, arginase accounted for a significant fraction of this soluble Mn[II] pool. Changes in the arginase levels affected the absolute mycelial Mn[II] content but not its distribution in the various mycelial fractions. The A. niger mycelia harvested from acidogenic growth media contain substantially less Mn[II] as compared to those from normal growth media. Nevertheless, acidogenic mycelia harbor considerable Mn[II] levels and a functional arginase. Altered levels of mycelial arginase protein did not significantly influence citric acid production. The relevance of arginase to cellular Mn[II] pool and homeostasis was evaluated and the results suggest that arginase regulation could occur via manganese availability.  相似文献   
16.
17.
Post-embryonic root growth relies on the proliferative activity of the root apical meristem (RAM), consisting, in part, of cells with juvenile characteristics (stem cells). It is generally, but erroneously held that the RAM indefinitely produces new cells throughout the lifespan of a plant, resulting in indeterminate root growth. On the contrary, convincing data, mainly from the lab of Thomas L. Rost, show in all species analyzed so far, including Arabidopsis, that RAM organization changes over time in parallel with both a cessation of the production of new cells, and a consequent reduction in root growth, even under optimal conditions. In addition, RAM organization evolved to become highly plastic and dynamic in response to environmental triggers (e.g. water and nutrient availability, pollutants). Under unfavourable conditions, the RAM is rapidly reorganized, and, as a result of the cessation of new cell production at the root tip, root growth is altered, and lateral root production is enhanced, thus providing the plant additional strategies to overcome the stress. It is now becoming increasingly clear that this environment-responsive developmental plasticity is linked to reactive oxygen/nitrogen species, antioxidants, and related enzymes, which form part of a complex signalling module specifically operating in the regulation of RAM functioning, in strict relationship with hormonal control of root development exerted by auxin, gibberellins and cytokinins. In turn, such redox/hormone crosstalk regulates gene expression.  相似文献   
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号