首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1985篇
  免费   133篇
  2022年   15篇
  2021年   18篇
  2020年   11篇
  2019年   25篇
  2018年   30篇
  2017年   22篇
  2016年   37篇
  2015年   53篇
  2014年   60篇
  2013年   109篇
  2012年   113篇
  2011年   132篇
  2010年   72篇
  2009年   76篇
  2008年   96篇
  2007年   115篇
  2006年   106篇
  2005年   104篇
  2004年   95篇
  2003年   78篇
  2002年   83篇
  2001年   60篇
  2000年   55篇
  1999年   48篇
  1998年   28篇
  1997年   16篇
  1996年   10篇
  1995年   12篇
  1994年   18篇
  1993年   17篇
  1992年   52篇
  1991年   35篇
  1990年   38篇
  1989年   39篇
  1988年   33篇
  1987年   31篇
  1986年   22篇
  1985年   19篇
  1984年   14篇
  1983年   12篇
  1982年   10篇
  1981年   13篇
  1980年   8篇
  1979年   11篇
  1978年   14篇
  1977年   13篇
  1976年   4篇
  1974年   6篇
  1971年   4篇
  1959年   4篇
排序方式: 共有2118条查询结果,搜索用时 15 毫秒
91.
92.
Compositional alteration of the gut microbiota is associated with ulcerative colitis (UC). Here, a model culture system is established for the in vitro human colonic microbiota of UC, which will be helpful for determining medical interventions. 16S ribosomal RNA sequencing confirms that UC models are successfully developed from fecal inoculum and retain the bacterial species biodiversity of UC feces. The UC models closely reproduce the microbial components and successfully preserve distinct clusters from the healthy subjects (HS), as observed in the feces. The relative abundance of bacteria belonging to the family Lachnospiraceae significantly decreases in the UC models compared to that in HS, as observed in the feces. The system detects significantly lower butyrogenesis in the UC models than that in HS, correlating with the decreased abundance of Lachnospiraceae. Interestingly, the relative abundance of Lachnospiraceae does not correlate with disease activity (defined as partial Mayo score), suggesting that Lachnospiraceae persists in UC patients at a decreased level, irrespective of the alteration in disease activity. Moreover, the system shows that administration of Clostridium butyricum MIYAIRI restores butyrogenesis in the UC model. Hence, the model detects deregulation in the intestinal environment in UC patients and may be useful for simulating the effect of probiotics.  相似文献   
93.
During inflammation, the covalent linking of the ubiquitous extracellular polysaccharide hyaluronan (HA) with the heavy chains (HC) of the serum protein inter alpha inhibitor (IαI) is exclusively mediated by the enzyme tumor necrosis factor α (TNFα)-stimulated-gene-6 (TSG-6). While significant advances have been made regarding how HC-modified HA (HC-HA) is an important regulator of inflammation, it remains unclear why HC-HA plays a critical role in promoting survival in intraperitoneal lipopolysaccharide (LPS)-induced endotoxemia while exerting only a modest role in the outcomes following intratracheal exposure to LPS. To address this gap, the two models of intraperitoneal LPS-induced endotoxic shock and intratracheal LPS-induced acute lung injury were directly compared in TSG-6 knockout mice and littermate controls. HC-HA formation, endogenous TSG-6 activity, and inflammatory markers were assessed in plasma and lung tissue. TSG-6 knockout mice exhibited accelerated mortality during endotoxic shock. While both intraperitoneal and intratracheal LPS induced HC-HA formation in lung parenchyma, only systemically-induced endotoxemia increased plasma TSG-6 levels and intravascular HC-HA formation. Cultured human lung microvascular endothelial cells secreted TSG-6 in response to both TNFα and IL1β stimulation, indicating that, in addition to inflammatory cells, the endothelium may secrete TSG-6 into circulation during systemic inflammation. These data show for the first time that LPS-induced systemic inflammation is uniquely characterized by significant vascular induction of TSG-6 and HC-HA, which may contribute to improved outcomes of endotoxemia.  相似文献   
94.
Medaka (Oryzias latipes) is a small freshwater teleost that provides an excellent developmental genetic model complementary to zebrafish. Our recent mutagenesis screening using medaka identified headfish (hdf) which is characterized by the absence of trunk and tail structures with nearly normal head including the midbrain-hindbrain boundary (MHB). Positional-candidate cloning revealed that the hdf mutation causes a functionally null form of Fgfr1. The fgfr1hdf is thus the first fgf receptor mutant in fish. Although FGF signaling has been implicated in mesoderm induction, mesoderm is induced normally in the fgfr1hdf mutant, but subsequently, mutant embryos fail to maintain the mesoderm, leading to defects in mesoderm derivatives, especially in trunk and tail. Furthermore, we found that morpholino knockdown of medaka fgf8 resulted in a phenotype identical to the fgfr1hdf mutant, suggesting that like its mouse counterpart, Fgf8 is a major ligand for Fgfr1 in medaka early embryogenesis. Intriguingly, Fgf8 and Fgfr1 in zebrafish are also suggested to form a major ligand-receptor pair, but their function is much diverged, as the zebrafish fgfr1 morphant and zebrafish fgf8 mutant acerebellar (ace) only fail to develop the MHB, but develop nearly unaffected trunk and tail. These results provide evidence that teleost fish have evolved divergent functions of Fgf8-Fgfr1 while maintaining the ligand-receptor relationships. Comparative analysis using different fish is thus invaluable for shedding light on evolutionary diversification of gene function.  相似文献   
95.
Orgil U  Araki H  Tangchaiburana S  Berkey R  Xiao S 《Genetics》2007,176(4):2317-2333
The RPW8 locus of Arabidopsis thaliana confers broad-spectrum resistance to powdery mildew pathogens. In many A. thaliana accessions, this locus contains two homologous genes, RPW8.1 and RPW8.2. In some susceptible accessions, however, these two genes are replaced by HR4, a homolog of RPW8.1. Here, we show that RPW8.2 from A. lyrata conferred powdery mildew resistance in A. thaliana, suggesting that RPW8.2 might have gained the resistance function before the speciation of A. thaliana and A. lyrata. To investigate how RPW8 has been maintained in A. thaliana, we examined the nucleotide sequence polymorphisms in RPW8 from 51 A. thaliana accessions, related disease reaction phenotypes to the evolutionary history of RPW8.1 and RPW8.2, and identified mutations that confer phenotypic variations. The average nucleotide diversities were high at RPW8.1 and RPW8.2, showing no sign of selective sweep. Moreover, we found that expression of RPW8 incurs fitness benefits and costs on A. thaliana in the presence and absence of the pathogens, respectively. Our results suggest that polymorphisms at the RPW8 locus in A. thaliana may have been maintained by complex selective forces, including those from the fitness benefits and costs both associated with RPW8.  相似文献   
96.
Legumain/asparaginyl endopeptidase (EC 3.4.22.34) is a novel cysteine protease that is abundantly expressed in the late endosomes and lysosomes of renal proximal tubular cells. Recently, emerging evidence has indicated that legumain might play an important role in control of extracellular matrix turnover in various pathological conditions such as tumor growth/metastasis and progression of atherosclerosis. We initially found that purified legumain can directly degrade fibronectin, one of the main components of the extracellular matrix, in vitro. Therefore, we examined the effect of legumain on fibronectin degradation in cultured mouse renal proximal tubular cells. Fibronectin processing can be inhibited by chloroquine, an inhibitor of lysosomal degradation, and can be enhanced by the overexpression of legumain, indicating that fibronectin degradation occurs in the presence of legumain in lysosomes from renal proximal tubular cells. Furthermore, in legumain-deficient mice, unilateral ureteral obstruction (UUO)-induced renal interstitial protein accumulation of fibronectin and renal interstitial fibrosis were markedly enhanced. These findings indicate that legumain might have an important role in extracellular matrix remodeling via the degradation of fibronectin in renal proximal tubular cells.  相似文献   
97.
98.
GskA, the Dictyostelium GSK-3 orthologue, is modified and activated by the dual-specificity tyrosine kinase Zak1, and the two kinases form part of a signaling pathway that responds to extracellular cyclic AMP. We identify potential cellular effectors for the two kinases by analyzing the corresponding null mutants. There are proteins and mRNAs that are altered in abundance in only one or the other of the two mutants, indicating that each kinase has some unique functions. However, proteomic and microarray analyses identified a number of proteins and genes, respectively, that are similarly misregulated in both mutant strains. The positive correlation between the array data and the proteomic data is consistent with the Zak1-GskA signaling pathway's functioning by directly or indirectly regulating gene expression. The discoidin 1 genes are positively regulated by the pathway, while the abundance of the H5 protein is negatively regulated. Two of the targets, H5 and discoidin 1, are well-characterized markers for early development, indicating that the Zak1-GskA pathway plays a role in development earlier than previously observed.  相似文献   
99.
We purified dipeptidyl peptidase II (DPP II) to homogeneity from rat kidney and determined its physicochemical properties, including its molecular weight, substrate specificity, and partial amino acid sequence. Furthermore, we screened a rat kidney cDNA library, isolated the DPP II cDNA and determined its structure. The cDNA was composed of 1,720 base pairs of nucleotides, and 500 amino acid residues were predicted from the coding region of cDNA. Human quiescent cell proline dipeptidase (QPP) cloned from T-cells is a 58-kDa glycoprotein existing as a homodimer formed with a leucine zipper motif. The levels of amino acid homology were 92.8% (rat DPP II vs. mouse QPP) and 78.9% (rat DPP II vs. human QPP), while those of nucleotide homology were 93.5% (rat DPP II vs. mouse QPP) and 79.4% (rat DPP II vs. human QPP). The predicted amino acid sequences of rat DPP II and human and mouse QPP possess eight cysteine residues and a leucine zipper motif at the same positions. The purified DPP II showed similar substrate specificity and optimal pH to those of QPP. Consequently, it was thought that DPP II is identical to QPP. Northern blot analysis with rat DPP II cDNA revealed prominent expression of DPP II mRNA in the kidney, and the order for expression was kidney > testis > or = heart > brain > or = lung > spleen > skeletal muscle > or = liver. In parallel with Northern blot analysis, the DPP II antigen was detected by immunohistochemical staining in the cytosol of epithelial cells in the kidney, testis, uterus, and cerebrum.  相似文献   
100.
The kidneys play pivotal roles in acid-base homeostasis, and the acid-secreting (alpha-type) and bicarbonate-secreting (beta-type) intercalated cells in the collecting ducts are major sites for the final modulation of urinary acid secretion. Since the H(+)-ATPase and anion exchanger activities in these two types of intercalated cells exhibit opposite polarities, it has been suggested that the alpha- and beta-intercalated cells are interchangeable via a cell polarity change. Immunohistological studies, however, have failed to confirm that the apical anion exchanger of beta-intercalated cells is the band 3 protein localized to the basolateral membrane of alpha-intercalated cells. In the present study, we show the evidence that a novel member of the anion exchanger and sodium bicarbonate cotransporter superfamily is an apical anion exchanger of beta-intercalated cells. Cloned cDNA from the beta-intercalated cells shows about 30% homology with anion exchanger types 1-3, and functional expression of this protein in COS-7 cells and Xenopus oocytes showed sodium-independent and 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid-insensitive anion exchanger activity. Furthermore, immunohistological studies revealed that this novel anion exchanger is present on the apical membrane of beta-intercalated cells, although some beta-intercalated cells were negative for AE4 staining. We conclude that our newly cloned transporter is an apical anion exchanger of the beta-intercalated cells, whereas our data do not exclude the possibility that there may be another form of anion exchanger in these cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号