首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1072篇
  免费   56篇
  国内免费   1篇
  2022年   8篇
  2021年   19篇
  2020年   19篇
  2019年   12篇
  2018年   17篇
  2017年   16篇
  2016年   34篇
  2015年   56篇
  2014年   41篇
  2013年   39篇
  2012年   72篇
  2011年   62篇
  2010年   47篇
  2009年   28篇
  2008年   48篇
  2007年   41篇
  2006年   39篇
  2005年   45篇
  2004年   23篇
  2003年   28篇
  2002年   22篇
  2001年   20篇
  2000年   22篇
  1999年   16篇
  1998年   9篇
  1997年   8篇
  1996年   10篇
  1995年   9篇
  1994年   9篇
  1993年   6篇
  1992年   10篇
  1991年   14篇
  1990年   9篇
  1989年   9篇
  1988年   10篇
  1987年   13篇
  1986年   13篇
  1985年   18篇
  1984年   16篇
  1983年   13篇
  1982年   12篇
  1981年   9篇
  1980年   12篇
  1979年   11篇
  1978年   10篇
  1977年   6篇
  1975年   8篇
  1971年   9篇
  1969年   6篇
  1968年   8篇
排序方式: 共有1129条查询结果,搜索用时 187 毫秒
91.
Loss-of-function mutations in PINK1 and Parkin cause parkinsonism in humans and mitochondrial dysfunction in model organisms. Parkin is selectively recruited from the cytosol to damaged mitochondria to trigger their autophagy. How Parkin recognizes damaged mitochondria, however, is unknown. Here, we show that expression of PINK1 on individual mitochondria is regulated by voltage-dependent proteolysis to maintain low levels of PINK1 on healthy, polarized mitochondria, while facilitating the rapid accumulation of PINK1 on mitochondria that sustain damage. PINK1 accumulation on mitochondria is both necessary and sufficient for Parkin recruitment to mitochondria, and disease-causing mutations in PINK1 and Parkin disrupt Parkin recruitment and Parkin-induced mitophagy at distinct steps. These findings provide a biochemical explanation for the genetic epistasis between PINK1 and Parkin in Drosophila melanogaster. In addition, they support a novel model for the negative selection of damaged mitochondria, in which PINK1 signals mitochondrial dysfunction to Parkin, and Parkin promotes their elimination.  相似文献   
92.
The teleomorph of Aquaphila albicans was discovered on submerged wood collected in Thailand. Its black, soft-textured, setose ascomata, bitunicate asci and hyaline to pale brown, multiseptate ascospores indicated an affinity to Tubeufiaceae (Dothideomycetes). After morphological or molecular comparisons with related species in Tubeufia, Acanthostigma and Taphrophila, it is described and illustrated as a new species, T. asiana Sivichai & K.M. Tsui, sp. nov. Finding this Tubeufia teleomorph was surprising, given the falcate conidia of its A. albicans anamorph, which superficially resemble the conidia of Fusarium and not the coiled, helicosporous conidia of other species in Tubeufiaceae. We assessed the phylogenetic relationships of A. albicans-T. asiana with ribosomal sequences from SSU and ITS and partial LSU regions by parsimony and Bayesian analysis. An initial set of 40 taxa representing a wide range of ascomycete families and their SSU sequences from GenBank showed A. albicans-T. asiana to be nested within the Tubeufiaceae with 100% bootstrap support. Their placement was inferred with ITS and partial LSU ribosomal sequences. The nearly identical ITS sequences of two isolates of A. albicans and one isolate of Tubeufia asiana united these fungi as a monophyletic group with 100% bootstrap support and further nested them, with 88% bootstrap support, in a clade containing Helicoon gigantisporum and Helicoma chlamydosporum. This is the first molecular phylogenetic study to place a nonhelicosporous species within the Tubeufiaceae and to show that helical conidia were lost at least once within the family.  相似文献   
93.
mRNA deadenylation is a key process in the regulation of translation and mRNA turnover. In Saccharomyces cerevisiae, deadenylation is primarily carried out by the Ccr4p and Caf1p/Pop2p subunits of the Ccr4-Not complex, which is conserved in eukaryotes including humans. Here we have identified an unconventional human Ccr4-Caf1 complex containing hCcr4d and hCaf1z, distant human homologs of yeast Ccr4p and Caf1p/Pop2p, respectively. The hCcr4d-hCaf1z complex differs from conventional Ccr4-Not deadenylase complexes, because (i) hCaf1z and hCcr4d concentrate in nuclear Cajal bodies and shuttle between the nucleus and cytoplasm and (ii) the hCaf1z subunit, in addition to rapid deadenylation, subjects substrate RNAs to slow exonucleolytic degradation from the 3' end in vitro. Exogenously expressed hCaf1z shows both of those activities on reporter mRNAs in human HeLa cells and stimulates general mRNA decay when restricted to the cytoplasm by deletion of its nuclear localization signal. These observations suggest that the hCcr4d-hCaf1z complex may function either in the nucleus or in the cytoplasm after its nuclear export, to degrade polyadenylated RNAs, such as mRNAs, pre-mRNAs, or those RNAs that are polyadenylated prior to their degradation in the nucleus.  相似文献   
94.
We have measured the (14)C content of human femoral mid-shaft collagen to determine the dynamics of adult collagen turnover, using the sudden doubling and subsequent slow relaxation of global atmospheric (14)C content due to nuclear bomb testing in the 1960s and 1970s as a tracer. (14)C measurements were made on bone collagen from 67 individuals of both sexes who died in Australia in 1990-1993, spanning a range of ages at death from 40 to 97, and these measurements were compared with values predicted by an age-dependent turnover model. We found that the dataset could constrain models of collagen turnover, with the following outcomes: 1) Collagen turnover rate of females decreases, on average, from 4%/yr to 3%/yr from 20 to 80 years. Male collagen turnover rates average 1.5-3%/yr over the same period. 2) For both sexes the collagen turnover rate during adolescent growth is much higher (5-15%/yr at age 10-15 years), with males having a significantly higher turnover rate than have females, by up to a factor of 2. 3) Much of the variation in residual bomb (14)C in a person's bone can be attributed to individual variation in turnover rate, but of no more than about 30% of the average values for adults. 4) Human femoral bone collagen isotopically reflects an individual's diet over a much longer period of time than 10 years, including a substantial portion of collagen synthesised during adolescence.  相似文献   
95.
Human exposure to microgravity is considered the major environmental factor of space flight that affects cells and tissues causing adverse effects to human health. Ground-based gravity-simulation experiments at the cellular and molecular levels have gained some insight into the underlying molecular and cellular alterations induced by microgravity. However, systematic study and detailed molecular mechanisms of the adverse effect of microgravity on living cells are still lacking. The main objective of this study was to apply DNA microarray technology in time-course experiments for genome-wide search of genes whose expression are altered by microgravity, as part of the effort in the identification of major space genes. In this study, we analyzed global gene expression profiles for a human liver cell line exposed to a ground-based modeled microgravity system for 1, 3, and 4 days using the rotary cell culture system (RCCS) and the Agilent 22k human oligo DNA microarrays. We have found that 139 genes' mRNA levels were significantly (P < or = 0.01) altered by the microgravity exposures. Some of these identified genes were further verified by Northern analysis.  相似文献   
96.
Groundnut is commonly consumed in its roasted form by many Nigerians. This study was therefore conducted to determine the levels of aflatoxin in roasted groundnut retailed in south‐western Nigeria with a view to assessing the fitness of the processed nut for human consumption. The effects of roasting and de‐coating as alternative methods for reducing the ‘aflatoxin scare’ in the nut were further assessed on aflatoxigenic fungal load and aflatoxin content of the nuts. Forty‐eight samples of retailed raw and roasted groundnut were collected and assessed by mycological and thin‐layer chromatographic analysis for changes in aflatoxigenic fungal population and aflatoxin concentration, respectively. Consequently, 480 isolates of the Aspergillus section Flavi group, A. flavus L strain (= 410), A. tamarii (= 56), A. parasiticus (= 7) and A. parvisclerotigenus (= 7), were recovered from all samples. Aflatoxigenic isolates of A. flavus L strain (58.8%) had a significantly (P < 0.05) higher incidence than the non‐aflatoxigenic isolates (41.2%). Aflatoxins were detected in 43 (89.6%) of the samples. Approximately 25% of all samples exceeded the 20 ng/g limit for aflatoxin B1 (AFB1) adopted by the National Agency for Food and Drug Administration and Control while 83 and 79% of all samples contained AFB1 and total aflatoxins above the European Union limits of 2 and 4 ng/g, respectively. Aflatoxin concentrations in the raw and coated samples were as much as five times higher than those in the roasted and de‐coated nuts, respectively. However, no significant difference was recorded between aflatoxin levels in the coated and de‐coated samples. This study has shown that roasting of groundnut and testa removal (de‐coating) are effective processing interventions that can significantly lower aflatoxin quantities in the kernels, thus making it fit for human consumption.  相似文献   
97.
Phosphodiesterase-6 (PDE6) is a multisubunit enzyme that plays a key role in the visual transduction cascade in rod and cone photoreceptors. Each type of photoreceptor utilizes discrete catalytic and inhibitory PDE6 subunits to fulfill its physiological tasks, i.e. the degradation of cyclic guanosine-3′,5′-monophosphate at specifically tuned rates and kinetics. Recently, the human PDE6H gene was identified as a novel locus for autosomal recessive (incomplete) color blindness. However, the three different classes of cones were not affected to the same extent. Short wave cone function was more preserved than middle and long wave cone function indicating that some basic regulation of the PDE6 multisubunit enzyme was maintained albeit by a unknown mechanism. To study normal and disease-related functions of cone Pde6h in vivo, we generated Pde6h knock-out (Pde6h−/−) mice. Expression of PDE6H in murine eyes was restricted to both outer segments and synaptic terminals of short and long/middle cone photoreceptors, whereas Pde6h−/− retinae remained PDE6H-negative. Combined in vivo assessment of retinal morphology with histomorphological analyses revealed a normal overall integrity of the retinal organization and an unaltered distribution of the different cone photoreceptor subtypes upon Pde6h ablation. In contrast to human patients, our electroretinographic examinations of Pde6h−/− mice suggest no defects in cone/rod-driven retinal signaling and therefore preserved visual functions. To this end, we were able to demonstrate the presence of rod PDE6G in cones indicating functional substitution of PDE6. The disparities between human and murine phenotypes caused by mutant Pde6h/PDE6H suggest species-to-species differences in the vulnerability of biochemical and neurosensory pathways of the visual signal transduction system.  相似文献   
98.
A common group of muscular dystrophies is associated with the aberrant glycosylation of α-dystroglycan. These clinically heterogeneous disorders, collectively termed dystroglycanopathies, are often associated with central nervous system and more rarely eye pathology. Defects in a total of eight putative and demonstrated glycosyltransferases or accessory proteins of glycosyltransferases have been shown to cause a dystroglycanopathy phenotype. In recent years the systematic analysis of large patient cohorts has uncovered a complex relationship between the underlying genetic defect and the resulting clinical phenotype. These studies have also drawn attention to the high proportion of patients that remain without a genetic diagnosis implicating novel genes in the pathogenesis of dystroglycanopathies. Recent glycomic analyses of α-dystroglycan have reported complex patterns of glycan composition and have uncovered novel glycan modifications. The exact glycan synthesis and modification pathways involved, as well as their role in ligand binding, remain only partially characterised. This review will focus on recent studies that have extended our knowledge of the mechanisms underlying dystroglycanopathies and have further characterised this patient population.  相似文献   
99.
Yeast lacking copper-zinc superoxide dismutase (sod1?) have a number of oxygen-dependent defects, including auxotrophies for lysine and methionine and sensitivity to oxygen. Here we report additional defects in metabolic regulation. Under standard growth conditions with glucose as the carbon source, yeast undergo glucose repression in which mitochondrial respiration is deemphasized, energy is mainly derived from glycolysis, and ethanol is produced. When glucose is depleted, the diauxic shift is activated, in which mitochondrial respiration is reemphasized and stress resistance increases. We find that both of these programs are adversely affected by the lack of Sod1p. Key events in the diauxic shift do not occur and sod1? cells do not utilize ethanol and stop growing. The ability to shift to growth on ethanol is gradually lost as time in culture increases. In early stages of culture, sod1? cells consume more oxygen and have more mitochondrial mass than wild-type cells, indicating that glucose repression is not fully activated. These changes are at least partially dependent on the activity of the Hap2,3,4,5 complex, as indicated by CYC1-lacZ reporter assays. These changes may indicate a role for superoxide in metabolic signaling and regulation and/or a role for glucose derepression in defense against oxidative stress.  相似文献   
100.
Microautophagy of cytosolic proteins by late endosomes   总被引:2,自引:0,他引:2  
Highlights? Late endosomes take up cytosolic proteins through membrane invaginations ? Endosomal microautophagy (eMI) requires multivesicular body formation ? hsc70 mediates selective targeting of cytosolic proteins during eMI ? hsc70 binds to the endosomal membrane through its polybasic cluster  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号