首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   351篇
  免费   30篇
  国内免费   1篇
  2023年   4篇
  2022年   4篇
  2021年   5篇
  2020年   3篇
  2019年   5篇
  2018年   5篇
  2017年   3篇
  2016年   5篇
  2015年   6篇
  2014年   16篇
  2013年   18篇
  2012年   15篇
  2011年   8篇
  2010年   5篇
  2009年   1篇
  2008年   15篇
  2007年   20篇
  2006年   15篇
  2005年   25篇
  2004年   19篇
  2003年   13篇
  2002年   9篇
  2001年   2篇
  2000年   8篇
  1999年   6篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1995年   4篇
  1994年   7篇
  1993年   2篇
  1992年   4篇
  1991年   13篇
  1990年   6篇
  1989年   5篇
  1988年   8篇
  1987年   10篇
  1986年   10篇
  1985年   15篇
  1984年   16篇
  1983年   8篇
  1982年   5篇
  1981年   8篇
  1980年   4篇
  1979年   6篇
  1978年   4篇
  1977年   1篇
  1976年   3篇
  1974年   2篇
排序方式: 共有382条查询结果,搜索用时 31 毫秒
11.
In rat parotid or pancreatic islet homogenates incubated at 7 degrees C, hexokinase displayed a greater affinity for but a lower maximal velocity with the alpha-anomer, as distinct from beta-anomer, of D-mannose. The anomeric specificity of mammalian hexokinase was similar in the case of D-mannose and D-glucose, but represented a mirror image of that of yeast hexokinase.  相似文献   
12.
At a low concentration of D-glucose (3.3 mM), the phosphorylation rate of this hexose in rat pancreatic islet homogenates incubated at 8 degrees C is higher with the beta- than with the alpha-anomer, as expected from the anomeric specificity of hexokinase. In the presence of a high concentration of glucose 6-phosphate (3.0 mM), which inhibits hexokinase but not glucokinase, the phosphorylation rates of the two anomers are not significantly different from one another. Nevertheless, in intact islets exposed at 8 degrees C to the same low concentration of D-glucose, the alpha-anomer augments, more than the beta-anomer, the production of lactic acid and net uptake of 45Ca. At the same concentration (3.3 mM), the alpha-anomer is also more potent than the beta-anomer in enhancing insulin release from perfused pancreases stimulated at 37 degrees C by L-leucine or by the combination of Ba2+ and theophylline. It is concluded that the participation of glucokinase is not essential for the anomeric specificity of glycolysis and insulin release in rat pancreatic islets.  相似文献   
13.
In pancreatic islet homogenates incubated in the presence of a high glucose concentration (40 mM), the beta-anomer of D-glucose is phosphorylated at a higher rate than the alpha-anomer, whether in the absence or presence of exogenous glucose 6-phosphate. However, in intact islets also exposed to 40 mM D-glucose, the production of 3H2O from D-[5-3H] glucose, the oxidation of D-[U-14C] glucose and the glucose-induced increment in either lactate production or 45Ca net uptake, as well as the release of insulin from isolated perfused pancreases, are not higher with beta- than alpha-D-glucose. It is concluded that the rate of glucose utilization by islet cells is not regulated solely by the activity of hexokinase and/or glucokinase.  相似文献   
14.
Impaired uptake of D-glucose by tumoral insulin-producing cells   总被引:1,自引:0,他引:1  
At variance with the situation found in normal pancreatic islets, no equilibration of extracellular and intracellular D-glucose concentrations occurs in tumoral insulin-producing cells of the RINm5F line. This unexpected behaviour may account, in part at least, for the abnormal kinetics of glucose utilization in the tumoral cells and their poor secretory response to this hexose.  相似文献   
15.
The phosphorylation of alpha- and beta-D-glucose by either yeast hexokinase or beef heart hexokinase was measured at both 10 and 30 degrees C. At 30 degrees C, the anomeric specificity of yeast hexokinase represented a mirror image of that of bovine hexokinase, in terms of both maximal velocity and affinity. A decrease in temperature apparently accentuated the anomeric difference in both maximal velocity and affinity of bovine hexokinase. Such a difference consisted in a higher maximal velocity with beta- than alpha-D-glucose, but a greater affinity for the alpha- than beta-anomer. In yeast hexokinase, however, the decrease in temperature suppressed the anomeric difference in maximal velocity and inversed the anomeric difference in affinity. In the case of both enzymes, the fall in temperature decreased more the maximal velocity recorded with alpha-D-glucose than that measured with beta-D-glucose, and severely lowered the Km for alpha-D-glucose, whilst failing to affect significantly the Km for beta-D-glucose. These findings, which allow to reconcile prior apparently conflicting data, reveal that the anomeric behaviour of hexokinase is affected by the ambient temperature. Our data also support the view that hexokinase underwent a phylogenic evolution in terms of its anomeric specificity.  相似文献   
16.
The phosphorylation of D-glucose (1.0mM) was measured in homogenates of tumoral islet cells incubated at 7 degrees C in the presence of labelled alpha- and/or beta-D-glucose, with or without exogenous glucose 6-phosphate. The close-to-maximal reaction velocity of hexokinase was higher with beta- than alpha-D-glucose. The latter anomer inhibited beta-D-glucose phosphorylation more than the beta-anomer decreased the phosphorylation of alpha-D-glucose. This behaviour was accounted for by the higher affinity of hexokinase for alpha- than for beta-D-glucose. These direct measurements of the relative contribution of each anomer to the overall rate of glucose phosphorylation in the presence of mixed populations of alpha- and beta-D-glucose validate the concept that the phosphorylation of D-glucose displays anomeric specificity even when the hexose is used at anomeric equilibrium. Glucose 6-phosphate inhibited the phosphorylation of the two anomers more severely when alpha-D-glucose rather than beta-D-glucose was the most abundant anomer.  相似文献   
17.
A Owen  A Sener  W J Malaisse 《Enzyme》1983,29(1):2-14
Pancreatic islets can be viewed as a fuel-sensor organ. The amount of ATP used by the islet cells for the maintenance of adequate Ca2+ gradients across membranes is not known. An indirect approach to this issue consists in the measurement of Ca-ATPase activity. The kinetics of Ca-ATPase in islet homogenates yielded a Km for ATP close to 0.1 mM and two Km values for Ca2+ close to 0.13 and 4-6 microM, respectively. Within limits, the Ca-ATPase appeared as a distinct entity from Mg-ATPase. Several divalent cations, including Mg2+, inhibited the Ca-ATPase activity. Calmodulin also inhibited, significantly albeit modestly Ca-ATPase. The activity of the enzyme was increased at high pH or in the presence of bicarbonate. The reaction velocity at close-to-physiological concentrations of ATP, Ca2+ and H+ suggests that the consumption of ATP by the Ca-ATPase may account for a major fraction of the overall rate of ATP breakdown in intact islets.  相似文献   
18.
1. The metabolism and metabolic effects of 3-phenylpyruvate were examined in rat pancreatic islets. 2. Islet homogenates catalysed transamination reactions between 3-phenylpyruvate and L-glutamate, L-leucine, L-norleucine or L-valine. 3-Phenylpyruvate failed to activate glutamate dehydrogenase. 3. 3-Phenylpyruvate rapidly entered into islet cells, was extensively converted into phenylalanine but slowly oxidized. 4. The conversion of phenylpyruvate into phenylalanine coincided with a fall in the content of several amino acids (especially glutamate and aspartate) in the islets and incubation medium, the accumulation of 2-oxoglutarate and a modest fall in the NH4+ production rate. 5. 3-Phenylpyruvate failed to affect 14CO2 output from islets prelabelled with [U-14C]palmitate, but augmented 14CO2 output from islets prelabelled or incubated with L-[U-14C]glutamine. 6. In the presence of L-glutamine, 3-phenylpyruvate augmented the ATP/ADP ratio and NAD(P)H islet content, and caused a rapid and sustained decrease in the outflow of radioactivity from islets prelabelled with [2-3H]adenosine. 7. These data support the view that the insulin-releasing capacity of 3-phenylpyruvate coincides with an increase in the catabolism of endogenous amino acids acting as 'partners' in transamination reactions leading to the conversion of 3-phenylpyruvate into phenylalanine.  相似文献   
19.
Glucose caused a sustained and dose-related increase in the fructose 2,6-bisphosphate content of isolated pancreatic islets, as well as of purified pancreatic B-cells. With isolated B-cells, the glucose saturation curve was sigmoidal and superimposable on that obtained with hepatocytes isolated from unfed rats. However, the response to glucose was notably faster in purified B-cells than in isolated hepatocytes. In contrast again with the situation prevailing in the liver, glucagon failed to decrease significantly the concentration of fructose 2,6-bisphosphate in either islets or purified B-cells. It is proposed that, in the process of glucose-stimulated insulin secretion, an early increase in fructose 2,6-bisphosphate formation may, by causing activation of 6-phosphofructo-1-kinase, allow glycolysis to keep pace with the rate of glucose phosphorylation.  相似文献   
20.
Summary Nutrients which stimulate insulin secretion are currently thought to initiate the series of cellular events eventually leading to insulin release either by interacting with a stereospecific receptor system (the regulatory site hypothesis) or by acting as a fuel (the substrate site hypothesis) in the pancreaticB-cell. The latter hypothesis is supported by a number of observations indicating that the capacity of nutrients to stimulate insulin release is indeed highly dependent on their capacity to increase catabolic fluxes in isolated pancreatic islets. However, these observations do not rule out the existence of nutrient receptors in islet cells. For instance, a nonmetabolized analog of L-leucine stimulates insulin release by causing allosteric activation of glutamate dehydrogenase, which should be considered, therefore, as a receptor for certain amino acids. Likewise, the increase in glycolytic flux, which is associated with the process of glucose-stimulated insulin release, is attributable not solely to a mass action phenomenon but also to the activation of phosphofructokinase by fructose 2.6-bisphosphate. The biosynthesis of this activator may involve a glucose receptor system. The fact that certain nutrient secretagogues (e.g D-glucose and L-leucine) act in the B-cell both as substrates and enzyme activators permits reconciliation of the substrate site and regulatory site hypotheses for insulin release.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号