首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1513篇
  免费   42篇
  2022年   5篇
  2021年   9篇
  2020年   4篇
  2019年   7篇
  2018年   13篇
  2017年   14篇
  2016年   17篇
  2015年   34篇
  2014年   59篇
  2013年   115篇
  2012年   76篇
  2011年   76篇
  2010年   52篇
  2009年   65篇
  2008年   99篇
  2007年   86篇
  2006年   109篇
  2005年   89篇
  2004年   93篇
  2003年   108篇
  2002年   126篇
  2001年   11篇
  2000年   12篇
  1999年   26篇
  1998年   34篇
  1997年   31篇
  1996年   14篇
  1995年   18篇
  1994年   24篇
  1993年   19篇
  1992年   11篇
  1991年   16篇
  1990年   7篇
  1989年   4篇
  1988年   2篇
  1986年   7篇
  1985年   5篇
  1984年   13篇
  1983年   3篇
  1982年   8篇
  1981年   9篇
  1980年   4篇
  1979年   6篇
  1978年   2篇
  1972年   3篇
  1971年   2篇
  1970年   1篇
  1969年   1篇
  1967年   1篇
  1964年   2篇
排序方式: 共有1555条查询结果,搜索用时 437 毫秒
71.
We investigated the contribution of the Na(+)/L-carnitine cotransporter in the transport of tetraethylammonium (TEA) by rat renal brush-border membrane vesicles. The transient uphill transport of L-carnitine was observed in the presence of a Na(+) gradient. The uptake of L-carnitine was of high affinity (K(m)=21 microM) and pH dependent. Various compounds such as TEA, cephaloridine, and p-chloromercuribenzene sulfonate (PCMBS) had potent inhibitory effects for L-carnitine uptake. Therefore, we confirmed the Na(+)/L-carnitine cotransport activity in rat renal brush-border membranes. Levofloxacin and PCMBS showed different inhibitory effects for TEA and L-carnitine uptake. The presence of an outward H(+) gradient induced a marked stimulation of TEA uptake, whereas it induced no stimulation of L-carnitine uptake. Furthermore, unlabeled TEA preloaded in the vesicles markedly enhanced [14C]TEA uptake, but unlabeled L-carnitine did not stimulate [14C]TEA uptake. These results suggest that transport of TEA across brush-border membranes is independent of the Na(+)/L-carnitine cotransport activity, and organic cation secretion across brush-border membranes is predominantly mediated by the H(+)/organic cation antiporter.  相似文献   
72.
73.
The mechanisms by which Pi depletion rapidly regulates gene expression and cellular function have not been clarified. Here, we found a rapid increase in intracellular ionized calcium [Ca(2+)](i) by phosphate depletion in LLC-PK(1) cells using confocal microscopy with the green-fluorescence protein based calcium indicator "yellow cameleon 2.1." The increase of [Ca(2+)](i) was observed in the presence or absence of extracellular Ca(2+). At the same time, an approximately twofold increase in intracellular inositol 1,4,5-triphosphate (IP(3)) occurred in response to the acute Pi depletion in the medium. Furthermore, 2-aminoethoxydiphenyl borate completely blocked the [Ca(2+)](i) increase induced by Pi depletion. These results suggest that Pi depletion causes IP(3)-mediated release of Ca(2+) from intracellular Ca(2+) pools and rapidly increases [Ca(2+)](i) in LLC-PK(1) cells.  相似文献   
74.
75.
Notch receptor plays a crucial role in proliferation and differentiation of many cell types. To elucidate the function of Notch signaling in osteogenesis, we transfected the constitutively active Notch1 (Notch intracellular domain, NICD) into two different osteoblastic mesenchymal cell lines, KusaA and KusaO, and examined the changes of their osteogenic potentials. In NICD stable transformants (KusaA(NICD) and KusaO(NICD)), osteogenic properties including alkaline phosphatase activity, expression of osteocalcin and type I collagen, and in vitro calcification were suppressed. Transient transfection of NICD attenuated the promoter activities of Cbfa1 and Ose2 element. KusaA was capable of forming trabecular bone-like tissues when injected into mouse abdomen, but this in vivo bone forming activity was significantly suppressed in KusaA(NICD). Osteoclasts were induced in the KusaA-derived bone-like tissues, but lacked in the KusaA(NICD)-derived tissues. These results suggest that Notch signaling suppresses the osteoblastic differentiation of mesenchymal progenitor cells.  相似文献   
76.
77.
The putative Rhodococcus rrn promoter region was cloned from the benzothiophene desulfurizing Rhodococcus sp. strain T09, and the dibenzothiophene desulfurizing gene, dsz, was expressed under the control of the putative rrn promoter in the strain T09 using a Rhodococcus–E.coli shuttle vector. Strain T09 harboring the expression vector, pNT, could desulfurize dibenzothiophene in the presence of inorganic sulfate, methionine, or cysteine, while the Dsz phenotype was completely repressed in recombinant cells carrying the gene under the control of the native dsz promoter under the same conditions. Among the sulfur sources examined, no intermediates were detected and only the final desulfurized product, 2-hydroxy-biphenyl, was produced using ammonium sulfate as the sulfur source. Received: 4 December 2001 / Accepted: 7 January 2002  相似文献   
78.
Lactoferrin (Lf) may play a key role in the clearance of microorganisms from a host. To study in vitro the bactericidal mechanisms of Lf during nonlactating periods, we investigated whether the effects of Lf were influenced by bovine mammary gland secretory cells (MGSC) and fresh normal bovine serum (NBS) as a source of complement. Phagocytic killing tests demonstrated that a phagocytic mixture of unopsonized Staphylococcus aureus (S. aureus) and MGSC in the presence of Lf reduced bacterial growth, compared with that of unopsonized S. aureus and MGSC without Lf. The opsonization with Lf and fresh NBS together resulted in more than a 95% reduction in CFU. The activation of complement induced by Lf also resulted in increased deposition of C3 on S. aureus, and the phagocytic activity of MGSC was augmented by opsonization with Lf and fresh NBS. Inhibition of C3 deposition by Lf was not induced in the presence of Mg-EGTA, but was induced by the addition of bovine Lf antiserum. These results strongly suggest that Lf induces the activation of complement in fresh NBS mainly through an alternative pathway. The results demonstrated a Lf-dependent, antibody-independent and complement-mediated phagocytic killing of S. aureus, and implied that Lf was synergistically capable of activating both the alternative pathway of the bovine complement cascade and phagocytosis by phagocytes.  相似文献   
79.
The inclusion of phloridzin into beta-cyclodextrin was studied as a model of molecular recognition in membranes. Effects on 1H NMR spectra and NOE correlational peaks between phloridzin and beta-cyclodextrin were observed in the complex. Strong NOEs were observed between hydrogens of a phenol group in phloridzin and beta-cyclodextrin. The three-dimensional structure of the inclusion complex between phloridzin and beta-cyclodextrin was simulated with distance constraints estimated by the intensity of NOE peaks using the DADAS90 programs. Two inclusion possibilities were suggested-the large rim of beta-cyclodextrin as an entrance of the inclusion and the small rim of beta-cyclodextrin as the entrance. In both cases, the phenol group of phloridzin was included in the hydrophobic space of beta-cyclodextrin.  相似文献   
80.
The activity of c-Src protein-tyrosine kinase is up-regulated under a number of receptor signaling pathways. However, the activation mechanism of c-Src under physiological conditions has remained unclear. We show here that the Shc adaptor protein is a novel direct activator of c-Src in epidermal growth factor receptor signaling in A431 human epidermoid carcinoma cells. Among the three Shc isoforms, P66 and P52, but not P46, were found to interact with and activate c-Src in vitro and in vivo. Activation of c-Src accompanied autophosphorylation of c-Src in the activation segment, but the carboxyl-terminal dephosphorylation was not observed. We have identified the interaction sites between Shc and c-Src and constructed a point mutant of Shc that abolishes the c-Src activation. Using this mutant, we have confirmed that the Shc-mediated c-Src activation triggers Stat-p21/WAF1/Cip1 pathway that has been implicated in the cell cycle arrest and apoptosis of epidermal growth factor-stimulated A431 cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号