首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2825篇
  免费   157篇
  2982篇
  2022年   14篇
  2021年   25篇
  2020年   14篇
  2019年   18篇
  2018年   24篇
  2017年   32篇
  2016年   46篇
  2015年   69篇
  2014年   92篇
  2013年   181篇
  2012年   147篇
  2011年   139篇
  2010年   100篇
  2009年   122篇
  2008年   159篇
  2007年   160篇
  2006年   163篇
  2005年   136篇
  2004年   151篇
  2003年   159篇
  2002年   175篇
  2001年   69篇
  2000年   66篇
  1999年   62篇
  1998年   51篇
  1997年   50篇
  1996年   25篇
  1995年   27篇
  1994年   39篇
  1993年   34篇
  1992年   45篇
  1991年   37篇
  1990年   30篇
  1989年   22篇
  1988年   30篇
  1987年   19篇
  1986年   26篇
  1985年   12篇
  1984年   24篇
  1983年   15篇
  1982年   14篇
  1981年   12篇
  1980年   17篇
  1979年   17篇
  1978年   10篇
  1977年   9篇
  1976年   10篇
  1975年   10篇
  1974年   11篇
  1970年   8篇
排序方式: 共有2982条查询结果,搜索用时 15 毫秒
91.
92.
We have shown recently that phosphoinositide 3-kinase (PI 3-kinase) accelerates the hypoxia-induced necrotic cell death of H9c2, derived from rat cardiomyocytes, by enhancing metabolic acidosis. Here we show the downstream events of acidosis that cause hypoxic cell death. Hypoxia induces the proteolysis of fodrin, a substrate of calpain. Intracellular Ca(2+) chelation by BAPTA, and the addition of SJA6017, a specific peptide inhibitor of calpain, also reduces cell death and fodrin proteolysis, indicating that Ca(2+) influx and calpain activation might be involved in these events. The overexpression of wild type PI 3-kinase accelerates fodrin proteolysis, while dominant-negative PI 3-kinase reduces it. Both (N-ethyl-N-isopropyl)amiloride (EIPA), an inhibitor of the Na(+)/H(+) exchanger, and KB-R7943, an inhibitor of the Na(+)/Ca(2+) exchanger, reduce hypoxic cell death and fodrin proteolysis. The depletion of intracellular Ca(2+ )stores by thapsigargin, an inhibitor of endoplasmic reticulum Ca(2+)-ATPase, also reduces cell death and fodrin proteolysis, indicating that Ca(2+ )release from intracellular Ca(2+ )stores might be also involved. These results indicate that PI 3-kinase might accelerate hypoxic cell death by enhancing the calpain-dependent proteolysis of fodrin.  相似文献   
93.
Summary The tryptophan synthase genes,trpA andtrpB, from a moderate thermophile,Bacillus stearothermophilus IFO13737, were expressed efficiently inEscherichia coli. The recombinant tryptophan synthase amounted to 22% of the soluble cellular protein, and was purified to homogeneity by three steps. The enzyme is more thermostable thanE.coli tryptophan synthase, especially the subunit. The enzyme is also more resistant to sodium dodecylsulfate and methanol thanE.coli enzyme.  相似文献   
94.

Background

More than 7000 papers related to “protein refolding” have been published to date, with approximately 300 reports each year during the last decade. Whilst some of these papers provide experimental protocols for protein refolding, a survey in the structural life science communities showed a necessity for a comprehensive database for refolding techniques. We therefore have developed a new resource – “REFOLDdb” that collects refolding techniques into a single, searchable repository to help researchers develop refolding protocols for proteins of interest.

Results

We based our resource on the existing REFOLD database, which has not been updated since 2009. We redesigned the data format to be more concise, allowing consistent representations among data entries compared with the original REFOLD database. The remodeled data architecture enhances the search efficiency and improves the sustainability of the database. After an exhaustive literature search we added experimental refolding protocols from reports published 2009 to early 2017. In addition to this new data, we fully converted and integrated existing REFOLD data into our new resource. REFOLDdb contains 1877 entries as of March 17th, 2017, and is freely available at http://p4d-info.nig.ac.jp/refolddb/.

Conclusion

REFOLDdb is a unique database for the life sciences research community, providing annotated information for designing new refolding protocols and customizing existing methodologies. We envisage that this resource will find wide utility across broad disciplines that rely on the production of pure, active, recombinant proteins. Furthermore, the database also provides a useful overview of the recent trends and statistics in refolding technology development.
  相似文献   
95.
A carrot gene homologous to the ABI3 gene of Arabidopsis wasisolated from a carrot somatic embryo cDNA library and designatedC-ABI3. The sequence of C-ABI3 was very similar to those ofABI3 of Arabidopsis and VP1 of maize in certain conserved regions.The expression of C-ABI3 was detected specifically in embryogeniccells, somatic embryos and developing seeds. Thus, expressionof C-ABI3 was limited to tissues that acquired desiccation tolerancein response to endogenous or exogenous abscisic acid (ABA).Endogenous levels of ABA in seeds increased transiently andthen desiccation of seeds started. The expression of C-ABI3in developing seeds was observed prior to the increase in levelsof endogenous ABA that was followed by desiccation of seeds.In transgenic mature leaves in which C-ABI3 was ectopicallyexpressed, expression of ECP31, ECP63 and ECP40 was inducedby treatment with ABA, which indicates that the expression ofECP genes was controlled by the pathway(s) that involved C-ABI3and ABA. This suggests that C-ABI3 has the same function asVP1/ABI3 factor in carrot somatic embryos. (Received March 4, 1998; Accepted September 4, 1998)  相似文献   
96.
We investigated the role of bacterial internalization in the killing caused by Shiga toxin-producing Escherichia coli (STEC) infection using a gnotobiotic murine model. A high number of internalized STEC was found in the colonic epithelial cells of STEC-infected mice by both an ex vivo assay and transmission electron microscopy. Most of these mice were killed within 10 days after infection. However, the implantation of lactic acid bacteria in such mice before infection markedly decreased the number of internalized STECs and also completely protected these hosts from killing by a STEC infection. The inhibition of such internalization by immunoglobulin also prevented the hosts from being killed. The Shiga toxin levels in these hosts indicated an inhibition of the penetration of Shiga toxins produced in the colon to the underlying tissue. These results suggested that the internalization plays an important role in the pathogenicity caused by STEC infection in a gnotobiotic murine model.  相似文献   
97.
MSM/Ms is an inbred mouse strain established from the Japanese wild mouse, Mus musculus molossinus, which has been phylogenetically distinct from common laboratory mouse strains for about 1 million years. The nucleotide substitution rate between MSM/Ms and C57BL/6 is estimated to be 0.96%. MSM/Ms mice display unique characteristics not observed in the commonly used laboratory strains, including an extremely low incidence of tumor development, high locomotor activity, and resistance to high-fat-diet-induced diabetes. Thus, functional genomic analyses using MSM/Ms should provide a powerful tool for the identification of novel phenotypes and gene functions. We report here the derivation of germline-competent embryonic stem (ES) cell lines from MSM/Ms blastocysts, allowing genetic manipulation of the M. m. molossinus genome. Fifteen blastocysts were cultured in ES cell medium and three ES lines, Mol/MSM-1, -2, and -3, were established. They were tested for germline competency by aggregation with ICR morulae and germline chimeras were obtained from all three lines. We also injected Mol/MSM-1 ES cells into blastocysts of ICR or C57BL/6 × BDF1 mice and found that blastocyst injection resulted in a higher production rate of chimeric mice than did aggregation. Furthermore, Mol/MSM-1 subclones electroporated with a gene trap vector were also highly efficient at producing germline chimeras using C57BL/6 × BDF1 blastocyst injection. This Mol/MSM-1 ES line should provide an excellent new tool allowing the genetic manipulation of the MSM/Ms genome.  相似文献   
98.
In autophagy, a cup-shaped membrane called the isolation membrane is formed, expanded, and sealed to complete a double membrane-bound vesicle called the autophagosome that encapsulates cellular constituents to be transported to and degraded in the lysosome/vacuole. The formation of the autophagosome requires autophagy-related (Atg) proteins. Atg8 is a ubiquitin-like protein that localizes to the isolation membrane; a subpopulation of this protein remains inside the autophagosome and is transported to the lysosome/vacuole. In the budding yeast Saccharomyces cerevisiae, Atg1 is a serine/threonine kinase that functions in the initial step of autophagosome formation and is also efficiently transported to the vacuole via autophagy. Here, we explore the mechanism and significance of this autophagic transport of Atg1. In selective types of autophagy, receptor proteins recognize degradation targets and also interact with Atg8, via the Atg8 family interacting motif (AIM), to link the targets to the isolation membrane. We find that Atg1 contains an AIM and directly interacts with Atg8. Mutations in the AIM disrupt this interaction and abolish vacuolar transport of Atg1. These results suggest that Atg1 associates with the isolation membrane by binding to Atg8, resulting in its incorporation into the autophagosome. We also show that mutations in the Atg1 AIM cause a significant defect in autophagy, without affecting the functions of Atg1 implicated in triggering autophagosome formation. We propose that in addition to its essential function in the initial stage, Atg1 also associates with the isolation membrane to promote its maturation into the autophagosome.  相似文献   
99.
Danforth'sshort-tail (Sd) mouse is a semi-dominant mutation affecting the development of the vertebral column. Although the notochord degenerates completely by embryonic day 9.5, the vertebral column exists up to the lumber region, suggesting that the floor plate can substitute for notochord function. We previously established the mutant mouse line, Skt(Gt), through gene trap mutagenesis and identified the novel gene, Skt, which was mapped 0.95cM distal to the Sd locus. Taking advantage of the fact that monitoring notochordal development and genotyping of the Sd locus can be performed using the Skt(Gt) allele, we assessed the development of the vertebra, notochord, somite, floor plate and sclerotome in +-+/+-Skt(Gt), Sd-+/+-+, Sd-Skt(Gt)/+-+, Sd-Skt(Gt)/+-Skt(Gt), Sd-+/Sd-+ and Sd-Skt(Gt)/Sd-Skt(Gt) embryos. In Sd homozygous mutants with a C57BL/6 genetic background, the vertebral column was truncated in the 6th thoracic vertebra, which was more severe than previously reported. The floor plate and sclerotome developed to the level of somite before notochord degeneration and the number of remaining vertebrae corresponded well with the level of development of the floor plate and sclerotome. Defects to the sclerotome and subsequent vertebral development were not due to failure of somitogenesis. Taken together, these results suggest that the notochord induced floor plate development before degeneration, and that the remaining floor plate is sufficient for maintenance of differentiation of the somite into the sclerotome and vertebra in the absence of the notochord.  相似文献   
100.
Abstract An adenylate cyclase gene ( cya ) mutant was mutagenized and an adenosine 3,5-cyclic monophosphate (cAMP)-requiring mutant (KM8161) was obtained on Davis minimal medium containing glucose in the presence or absence of cAMP. KM8161 also required N -acetylglucosamine for its growth instead of cAMP. Furthermore, the mutant could use neither glucosamine nor N -acetylglucosamine as the carbon source. These results indicate that the cAMP-requiring property is due to multiple mutations of a few genes involved in amino sugar metabolism in addition to cya . By genetic analysis of KM8161, one gene, which was tentatively termed cidA and located near 2 min on the chromosomal map, proved to be defective. Reversion of cidA mutation in KM8161 resulted in recovery of not only the cAMP-requiring phenotype but also non-utilization of amino sugars. When both cAMP and N -acetylglucosamine or glucosamine were added to the culture medium for KM8161, only N -acetylglucosamine could be utilized as the carbon source. These studies s strongly suggest that the cidA or cya mutation in KM8161 causes deficiency in different stages of amino sugar metabolism and the regulatory circuit of growth by cAMP is mediated via control of N -acetylglucosamine metabolism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号