首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1721篇
  免费   61篇
  1782篇
  2022年   5篇
  2021年   11篇
  2020年   4篇
  2019年   8篇
  2018年   17篇
  2017年   16篇
  2016年   18篇
  2015年   36篇
  2014年   57篇
  2013年   112篇
  2012年   81篇
  2011年   90篇
  2010年   54篇
  2009年   71篇
  2008年   106篇
  2007年   94篇
  2006年   118篇
  2005年   99篇
  2004年   109篇
  2003年   127篇
  2002年   138篇
  2001年   23篇
  2000年   21篇
  1999年   31篇
  1998年   36篇
  1997年   36篇
  1996年   16篇
  1995年   19篇
  1994年   26篇
  1993年   21篇
  1992年   21篇
  1991年   19篇
  1990年   10篇
  1989年   8篇
  1988年   4篇
  1987年   8篇
  1986年   12篇
  1985年   12篇
  1984年   17篇
  1983年   6篇
  1982年   12篇
  1981年   3篇
  1980年   5篇
  1979年   7篇
  1978年   5篇
  1977年   7篇
  1976年   4篇
  1975年   3篇
  1972年   4篇
  1971年   3篇
排序方式: 共有1782条查询结果,搜索用时 0 毫秒
41.
Centromere that plays a pivotal role in chromosome segregation is composed of repetitive elements in many eukaryotes. Although chromosomal regions containing repeats are the hotspots of rearrangements, little is known about the stability of centromere repeats. Here, by using a minichromosome that has a complete set of centromere sequences, we have developed a fission yeast system to detect gross chromosomal rearrangements (GCRs) that occur spontaneously. Southern and comprehensive genome hybridization analyses of rearranged chromosomes show two types of GCRs: translocation between homologous chromosomes and formation of isochromosomes in which a chromosome arm is replaced by a copy of the other. Remarkably, all the examined isochromosomes contain the breakpoint in centromere repeats, showing that isochromosomes are produced by centromere rearrangement. Mutations in the Rad3 checkpoint kinase increase both types of GCRs. In contrast, the deletion of Rad51 recombinase preferentially elevates isochromosome formation. Chromatin immunoprecipitation analysis shows that Rad51 localizes at centromere around S phase. These data suggest that Rad51 suppresses rearrangements of centromere repeats that result in isochromosome formation.  相似文献   
42.
43.
Fifty-four clones containing human inserts were selected from a cosmid library constructed from a somatic cell hybrid containing chromosome 11p15.3-p15.5 as its only human complement. In 32 of these clones, 63 polymorphic systems were identified with a panel of restriction enzymes: 57 conventional RFLP systems and 6 highly polymorphic VNTR systems. Although we examined the cosmid with only seven enzymes, 18 clones (including 6 VNTRs) were polymorphic with three or more enzymes. The results suggested that DNA sequences on the peritelomeric region of chromosome 11p tend to be highly variable. Because these markers are highly informative, they will be excellent resources for investigations of hereditary diseases and tumor suppressor genes in this region of chromosome 11.  相似文献   
44.
The Multidrug Resistance Protein, MRP1 (ABCC1) confers drug resistance and transports organic anions such as leukotriene C(4) (LTC(4)) and 17beta-estradiol 17-(beta-D-glucuronide) (E(2)17betaG). Previous studies showed that portions of the first membrane spanning domain (MSD1) and the cytoplasmic loop (CL3) connecting it to MSD2 are important for MRP1 transport function. We have replaced 12 prolines in MSD1 and CL3 with alanine and determined the effects of these substitutions on MRP1 expression and transport activity. All singly substituted MRP1-Pro mutants could be expressed in HeLa cells, except MRP1-P104A. The expressed mutants also transported LTC(4) and E(2)17betaG, and their K(m) (LTC(4)) values were similar to wild-type MRP1. Expression of the double mutant MRP1-P42/51A was reduced by >80% although it localized to the plasma membrane and transported organic anions. MRP1 expression was also reduced when the first transmembrane helix (amino acids 37-54) was deleted. In contrast, the phenotypes of the multiply substituted CL3 mutants MRP1-P196/205/207/209A and MRP1-P235/255A were comparable to wild-type MRP1. However, Pro(255)-substituted MRP1 mutants showed reduced immunoreactivity with a monoclonal antibody (MAb) whose epitope is located in CL3. We conclude that certain prolines in MSD1 and CL3 play a role in the expression and structure of MRP1.  相似文献   
45.
The pea phytochrome I (PI) cDNA clone, pPP1001, was expressedin E. coli. The plasmid pPP1001 contains pea PI cDNA which coversthe entire coding region with the Shine-Dalgarno consensus sequencejoined upstream of the cDNA in an expression vector pNUT6. ThepPP1001 transformants formed typical inclusion bodies when culturedat 32?C. However, when cultured at 37?C or in the presence ofisopropyl-ß-D-thiogalactopyranoside (IPTG) at 32?C,the bacteria lysed before inclusion body formation. Immuno-stainingwith anti-PI monoclonal antibody, mAP5, of transformants fixedby cold methanol showed that stainable materials were distributedin whole cytoplasmic region. When the inclusion bodies wereobserved clearly, the regions corresponding to the inclusionbodies became difficult to stain. Western blot analysis, however,showed that a ca. 100 kDa PI polypeptide was detected in thefraction from inclusion bodies and a ca. 90 kDa PI polypeptidefrom the soluble fraction. The amino acid sequence analysisof purified 100 kDa PI sample indicated that its amino terminusis blocked. However, minor signals in one experiment yieldeda sequence corresponding to the expected amino terminus of peaPI except for the initiation methionine. One of the anti-peaPI monoclonal antibodies, mAP9, that recognizes the near N-terminusof pea phytochrome was reactive to the 100 kDa polypeptide. (Received June 22, 1990; Accepted November 18, 1990)  相似文献   
46.
pharaonis Phoborhodopsin (ppR; also pharaonis sensory rhodopsin II, psRII) is a retinal protein in Natronobacterium pharaonis and is a receptor of negative phototaxis. It forms a complex with its transducer, pHtrII, in membranes and transmits light signals by protein-protein interaction. Tyr-199 is conserved completely in phoborhodopsins among a variety of archaea, but it is replaced by Val (for bacteriorhodopsin) and Phe (for sensory rhodopsin I). Previously, we (Sudo, Y., M. Iwamoto, K. Shimono, and N. Kamo, submitted for publication) showed that analysis of flash-photolysis data of a complex between D75N and the truncated pHtrII (t-Htr) give a good estimate of the dissociation constant K(D) in the dark. To investigate the importance of Tyr-199, K(D) of double mutants of D75N/Y199F or D75N/Y199V with t-Htr was estimated by flash-photolysis and was approximately 10-fold larger than that of D75N, showing the significant contribution of Tyr-199 to binding. The K(D) of the D75N/t-Htr complex increased with decreasing pH, and the data fitted well with the Henderson-Hasselbach equation with a single pK(a) of 3.86 +/- 0.02. This suggests that certain deprotonated carboxyls at the surface of the transducer (possibly Asp-102, Asp-104, and Asp-106) are needed for the binding.  相似文献   
47.
In order to establish industrial production of 5′-inosinic acid (5′-IMP), a permeability mutant, KY13171, of Brevibacterium ammoniagenes, which accumulated 7 to 8 grams of 5′-IMP per liter and 4 to 6 grams of hypoxanthine (Hx) per liter (calculated as 5′-IMP), was improved by a genetical procedure. Further improved mutants were selected stepwise through repeating mutational work. The finally selected mutant. KY13369, accumulated 20 to 27 grams of 5′-IMP per liter, but not Hx.

Increased productivity of 5′-IMP and decreased productivity of Hx were not caused by the changes in 5′-IMP degrading activity, because these activities were not significantly different among the mutants. These results appear to indicate that the increased accumulation of 5′-IMP may be caused by the improvement in membrane permeability for 5′-IMP. However, the changes in phospholipid and fatty acid compositions were not enough to explain the increased permeability.  相似文献   
48.
microRNAs (miRNAs) contained in small extracellular vesicles (sEVs) are candidates for non-invasive biomarkers. Oxaliplatin (L-OHP) has been approved for advanced colorectal cancer (CRC) chemotherapy. However, the response to L-OHP differs among CRC patients. In addition, CRC cells often acquire the resistance to L-OHP. This study aimed at the prediction of L-OHP sensitivity by measuring extracellular miRNAs levels. Firstly, we compared intracellular miRNAs expressions in L-OHP-sensitive CRC cells (SW620 and HCT116 cells) with those in acquired and intrinsic L-OHP-resistant cells. In microarray and real-time RT-PCR analyses, the intracellular miR-33a-5p, miR-210–3p, and miR-224–5p expressions were lower in acquired and intrinsic L-OHP-resistant CRC cells than sensitive cells. Furthermore, in SW620 cells, L-OHP sensitivity was decreased by miR-33a-5p inhibitor. On the other hand, miR-210–3p or miR-224–5p inhibitor did not affect L-OHP sensitivity in SW620 cells. Secondly, the amount of miR-33a-5p, miR-210–3p, and miR-224–5p in sEVs was compared. The amount of miR-33a-5p and miR-210–3p in sEVs secreted from acquired and intrinsic L-OHP-resistant cells tended to be small. miR-224–5p was not detected in sEVs secreted from three types of CRC cells examined. To the best of our knowledge, this is the first study demonstrating that miR-33a-5p and/or miR-210–3p in sEVs would be candidates for biomarkers of L-OHP sensitivity. In particular, miR-33a-5p is a promising candidate because it would be directly involved in L-OHP sensitivity.  相似文献   
49.
Abstract

Structure of cyclic adenosine diphosphoribose (cADPR) was reinvestigated by using 1H, 13C, and 31P NMR spectroscopy. The 1H-1H coupling constants and NOE data suggested that the adenosine and ribose moieties have a predominant C2′-endo conformation and an unusual flat conformation, respectively.  相似文献   
50.
Abstract

2′-Deoxy-2′-methylidenecytidine (DMDC), a potent inhibitor of the growth of tumor cells, was crystallized with two different forms. One is dihydrated (DMDC·2H2O) and the other is its hydrochloride salt (DMDC·HCLl). Both crystal and molecular structures have been determined by the X-ray diffraction method. In both forms the glycosidic and sugar conformations are anti and C(4′)-exo, respectively, whereas the conformation about the exocyclic bond is trans for DMDC·2H2O and gauche + for DMDC·HCl. Proton nuclear magnetic resonance data of DMDC indicate a preference for the anti C(4′)-exo conformation found in the solid state. These molecular conformations were compared with the related pyrimidine nucleosides. When the cytosine bases are brought into coincidence, DMDC displays the exocyclic C(4′)-C(5′) bond located on the very close position to those of pyrimidine nucleosides with typical overall conformations. On the other hand, the hydroxyl O(3′)-H groups are separated by ca. 3 Å in the cases of DMDC and other pyrimidine nucleosides which have the C(2′)-endo sugar conformation. This result may be useful for the implication about the mechanism of the biological activity of DMDC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号