首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1694篇
  免费   65篇
  2022年   5篇
  2021年   12篇
  2020年   7篇
  2019年   12篇
  2018年   16篇
  2017年   15篇
  2016年   21篇
  2015年   44篇
  2014年   64篇
  2013年   116篇
  2012年   86篇
  2011年   89篇
  2010年   57篇
  2009年   70篇
  2008年   112篇
  2007年   91篇
  2006年   117篇
  2005年   96篇
  2004年   106篇
  2003年   123篇
  2002年   139篇
  2001年   19篇
  2000年   18篇
  1999年   36篇
  1998年   35篇
  1997年   35篇
  1996年   18篇
  1995年   22篇
  1994年   25篇
  1993年   24篇
  1992年   13篇
  1991年   18篇
  1990年   9篇
  1989年   6篇
  1988年   3篇
  1987年   6篇
  1986年   9篇
  1985年   7篇
  1984年   13篇
  1983年   3篇
  1982年   9篇
  1981年   6篇
  1980年   4篇
  1979年   6篇
  1978年   3篇
  1972年   3篇
  1971年   2篇
  1969年   1篇
  1967年   1篇
  1964年   2篇
排序方式: 共有1759条查询结果,搜索用时 359 毫秒
131.
Understanding the molecular mechanisms that convey salt tolerance in plants is a crucial issue for increasing crop yield. The ice plant (Mesembryanthemum crystallinum) is a halophyte that is capable of growing under high salt conditions. For example, the roots of ice plant seedlings continue to grow in 140 mM NaCl, a salt concentration that completely inhibits Arabidopsis thaliana root growth. Identifying the molecular mechanisms responsible for this high level of salt tolerance in a halophyte has the potential of revealing tolerance mechanisms that have been evolutionarily successful. In the present study, deep sequencing (RNAseq) was used to examine gene expression in ice plant roots treated with various concentrations of NaCl. Sequencing resulted in the identification of 53,516 contigs, 10,818 of which were orthologs of Arabidopsis genes. In addition to the expression analysis, a web-based ice plant database was constructed that allows broad public access to the data. The results obtained from an analysis of the RNAseq data were confirmed by RT-qPCR. Novel patterns of gene expression in response to high salinity within 24 hours were identified in the ice plant when the RNAseq data from the ice plant was compared to gene expression data obtained from Arabidopsis plants exposed to high salt. Although ABA responsive genes and a sodium transporter protein (HKT1), are up-regulated and down-regulated respectively in both Arabidopsis and the ice plant; peroxidase genes exhibit opposite responses. The results of this study provide an important first step towards analyzing environmental tolerance mechanisms in a non-model organism and provide a useful dataset for predicting novel gene functions.  相似文献   
132.
133.
134.
135.
136.
Background and aims: Transforming growth factor-beta (TGFβ) is known to potently inhibit cell growth. Loss of responsiveness to TGFβ inhibition on cell growth is a hallmark of many types of cancer, yet its mechanism is not fully understood. Membrane-anchored heparin-binding EGF-like growth factor (proHB-EGF) ectodomain is cleaved by a disintegrin and metalloproteinase (ADAM) members and is implicated in epidermal growth factor receptor (EGFR) transactivation. Recently, nuclear translocation of the C-terminal fragment (CTF) of pro-HB-EGF was found to induce cell growth. We investigated the association between TGFβ and HB-EGF signal transduction via ADAM activation.Materials and methods: The CCK-8 assay in two gastric cancer cell lines was used to determine the effect for cell growth by TGFβ. The effect of two ADAM inhibitors was also evaluated. Induction of EGFR phosphorylation by TGFβ was analyzed and the effect of the ADAM inhibitors was also examined. Nuclear translocation of HB-EGF-CTF by shedding through ADAM activated by TGFβ was also analyzed. EGFR transactivation, HB-EGF-CTF nuclear translocation, and cell growth were examined under the condition of ADAM17 knockdown.Result: TGFβ-induced EGFR phosphorylation of which ADAM inhibitors were able to inhibit. TGFβ induced shedding of proHB-EGF allowing HB-EGF-CTF to translocate to the nucleus. ADAM inhibitors blocked this nuclear translocation. TGFβ enhanced gastric cancer cell growth and ADAM inhibitors suppressed this effect. EGFR phosphorylation, HB-EGF-CTF nuclear translocation, and cell growth were suppressed in ADAM17 knockdown cells.Conclusion: HB-EGF-CTF nuclear translocation and EGFR transactivation from proHB-EGF shedding mediated by ADAM17 activated by TGFβ might be an important pathway of gastric cancer cell proliferation by TGFβ.  相似文献   
137.
We examined whether and how pretreatment with carbon monoxide (CO) prevents apoptosis of cardioblastic H9c2 cells in ischemia-reperfusion. Reperfusion (6 h) following brief ischemia (10 min) induced cytochrome c release, activation of caspase-9 and caspase-3, and apoptotic nuclear condensation. Brief CO pretreatment (10 min) or a caspase-9 inhibitor (Z-LEHD-FMK) attenuated these apoptotic changes. Ischemia-reperfusion increased phosphorylation of Akt at Ser472/473/474, and this was enhanced by CO pretreatment. A specific Akt inhibitor (API-2) blunted the anti-apoptotic effects of CO in reperfusion. In normoxic cells, CO enhanced generation, which was inhibited by a mitochondrial complex III inhibitor (antimycin A) but not by a NADH oxidase inhibitor (apocynin). The CO-enhanced Akt phosphorylation was suppressed by an scavenger (Tiron), catalase or a superoxide dismutase (SOD) inhibitor (DETC). These results suggest that CO pretreatment induces mitochondrial generation of , which is then converted by SOD to H2O2, and subsequent Akt activation by H2O2 attenuates apoptosis in ischemia-reperfusion.  相似文献   
138.
During tumorigenesis, cells acquire immortality in association with the development of genomic instability. However, it is still elusive how genomic instability spontaneously generates during the process of tumorigenesis. Here, we show that precancerous DNA lesions induced by oncogene acceleration, which induce situations identical to the initial stages of cancer development, trigger tetraploidy/aneuploidy generation in association with mitotic aberration. Although oncogene acceleration primarily induces DNA replication stress and the resulting lesions in the S phase, these lesions are carried over into the M phase and cause cytokinesis failure and genomic instability. Unlike directly induced DNA double-strand breaks, DNA replication stress-associated lesions are cryptogenic and pass through cell-cycle checkpoints due to limited and ineffective activation of checkpoint factors. Furthermore, since damaged M-phase cells still progress in mitotic steps, these cells result in chromosomal mis-segregation, cytokinesis failure and the resulting tetraploidy generation. Thus, our results reveal a process of genomic instability generation triggered by precancerous DNA replication stress.  相似文献   
139.
It is important to evaluate the health effects of low-dose-rate or low-dose radiation in combination with chemicals as humans are exposed to a variety of chemical agents. Here, we examined combined genotoxic effects of low-dose-rate radiation and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), the most carcinogenic tobacco-specific nitrosamine, in the lung of gpt delta transgenic mice. In this mouse model, base substitutions and deletions can be separately analyzed by gpt and Spi- selections, respectively. Female gpt delta mice were either treated with gamma-irradiation alone at a dose rate of 0.5, 1.0 or 1.5 mGy/h for 22 h/day for 31 days or combined with NNK treatments at a dose of 2 mg/mouse/day, i.p. for four consecutive days in the middle course of irradiation. In the gpt selection, the NNK treatments enhanced the mutation frequencies (MFs) significantly, but no obvious combined effects of gamma-irradiation were observable at any given radiation dose. In contrast, NNK treatments appeared to suppress the Spi- large deletions. In the Spi- selection, the MFs of deletions more than 1 kb in size increased in a dose-dependent manner. When NNK treatments were combined, the dose-response curve became bell-shaped where the MF at the highest radiation dose decreased substantially. These results suggest that NNK treatments may elicit an adaptive response that eliminates cells bearing radiation-induced double-strand breaks in DNA. Possible mechanisms underlying the combined genotoxicity of radiation and NNK are discussed, and the importance of evaluation of combined genotoxicity of more than one agent is emphasized.  相似文献   
140.
Cultured Coptis japonica cells show tolerance to various toxic compounds. By yeast functional screening of cadmium (Cd) plates with its cDNA library, we isolated a gene encoding Bowman-Birk proteinase inhibitor (CjBBI). The yeast transformant of CjBBI showed multiple tolerance to various drugs adding to Cd, and revealed reduced Cd accumulation in cells. Preferential organs for Cjbbi expression were aerial parts of intact plants, and the subcellular localization of CjBBI was shown, using its green fluorescent protein fusion, to be the apoplast. Induction of Cjbbi expression by Cd treatment suggested that CjBBI was responsible for the tolerance to Cd observed in C. japonica cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号