首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2158篇
  免费   82篇
  2240篇
  2022年   10篇
  2021年   13篇
  2020年   6篇
  2019年   13篇
  2018年   25篇
  2017年   18篇
  2016年   28篇
  2015年   50篇
  2014年   82篇
  2013年   162篇
  2012年   102篇
  2011年   103篇
  2010年   78篇
  2009年   93篇
  2008年   133篇
  2007年   113篇
  2006年   145篇
  2005年   112篇
  2004年   120篇
  2003年   134篇
  2002年   146篇
  2001年   36篇
  2000年   45篇
  1999年   42篇
  1998年   41篇
  1997年   36篇
  1996年   18篇
  1995年   20篇
  1994年   27篇
  1993年   23篇
  1992年   25篇
  1991年   33篇
  1990年   21篇
  1989年   25篇
  1988年   16篇
  1987年   6篇
  1986年   13篇
  1985年   18篇
  1984年   22篇
  1983年   10篇
  1982年   10篇
  1981年   9篇
  1980年   5篇
  1979年   9篇
  1978年   5篇
  1977年   7篇
  1976年   5篇
  1975年   4篇
  1973年   3篇
  1972年   4篇
排序方式: 共有2240条查询结果,搜索用时 0 毫秒
31.
32.
It has recently been reported that expression of heme oxygenase-1 (HO-1) plays a protective role against many diseases. Furthermore, n-3 polyunsaturated fatty acids (PUFAs) were shown to induce HO-1 expression in several cells in vitro, and in a few cases also in vivo. However, very few reports have demonstrated that n-3 PUFAs induce HO-1 in vivo.  相似文献   
33.
FliI ATPase forms a homo-hexamer to fully exert its ATPase activity, facilitating bacterial flagellar protein export. However, it remains unknown how FliI hexamerization is linked to protein export. Here, we analyzed the capability of ring formation by FliI and its catalytic mutant variants. Compared to ATP a non-hydrolysable ATP analog increased the probability of FliI hexamerization. In contrast, FliI(E221Q), which retained the affinity for ATP but has lost ATPase activity, efficiently formed the hexamer even in the presence of ATP. The mutations, which reduced the binding affinity for ATP, significantly abolished the ring formation. These results indicate that ATP-binding induces FliI hexamerization and that the release of ADP and Pi destabilizes the ring structure. FliI(E221Q) facilitated flagellar protein export in the absence of the FliH regulator of the export apparatus although not at the wild-type FliI level while the other did not. We propose that FliI couples ATP binding and hydrolysis to its assembly-disassembly cycle to efficiently initiate the flagellar protein export cycle.  相似文献   
34.
During tumorigenesis, cells acquire immortality in association with the development of genomic instability. However, it is still elusive how genomic instability spontaneously generates during the process of tumorigenesis. Here, we show that precancerous DNA lesions induced by oncogene acceleration, which induce situations identical to the initial stages of cancer development, trigger tetraploidy/aneuploidy generation in association with mitotic aberration. Although oncogene acceleration primarily induces DNA replication stress and the resulting lesions in the S phase, these lesions are carried over into the M phase and cause cytokinesis failure and genomic instability. Unlike directly induced DNA double-strand breaks, DNA replication stress-associated lesions are cryptogenic and pass through cell-cycle checkpoints due to limited and ineffective activation of checkpoint factors. Furthermore, since damaged M-phase cells still progress in mitotic steps, these cells result in chromosomal mis-segregation, cytokinesis failure and the resulting tetraploidy generation. Thus, our results reveal a process of genomic instability generation triggered by precancerous DNA replication stress.  相似文献   
35.

Background

Heparan sulfate (HS) is present on the surface of virtually all mammalian cells and is a major component of the extracellular matrix (ECM), where it plays a pivotal role in cell-cell and cell-matrix cross-talk through its large interactome. Disruption of HS biosynthesis in mice results in neonatal death as a consequence of malformed lungs, indicating that HS is crucial for airway morphogenesis. Neonatal mortality (~50%) in newborns with congenital diaphragmatic hernia (CDH) is principally associated with lung hypoplasia and pulmonary hypertension. Given the importance of HS for lung morphogenesis, we investigated developmental changes in HS structure in normal and hypoplastic lungs using the nitrofen rat model of CDH and semi-synthetic bacteriophage ('phage) display antibodies, which identify distinct HS structures.

Results

The pulmonary pattern of elaborated HS structures is developmentally regulated. For example, the HS4E4V epitope is highly expressed in sub-epithelial mesenchyme of E15.5 - E17.5 lungs and at a lower level in more distal mesenchyme. However, by E19.5, this epitope is expressed similarly throughout the lung mesenchyme. We also reveal abnormalities in HS fine structure and spatiotemporal distribution of HS epitopes in hypoplastic CDH lungs. These changes involve structures recognised by key growth factors, FGF2 and FGF9. For example, the EV3C3V epitope, which was abnormally distributed in the mesenchyme of hypoplastic lungs, is recognised by FGF2.

Conclusions

The observed spatiotemporal changes in HS structure during normal lung development will likely reflect altered activities of many HS-binding proteins regulating lung morphogenesis. Abnormalities in HS structure and distribution in hypoplastic lungs can be expected to perturb HS:protein interactions, ECM microenvironments and crucial epithelial-mesenchyme communication, which may contribute to lung dysmorphogenesis. Indeed, a number of epitopes correlate with structures recognised by FGFs, suggesting a functional consequence of the observed changes in HS in these lungs. These results identify a novel, significant molecular defect in hypoplastic lungs and reveals HS as a potential contributor to hypoplastic lung development in CDH. Finally, these results afford the prospect that HS-mimetic therapeutics could repair defective signalling in hypoplastic lungs, improve lung growth, and reduce CDH mortality.  相似文献   
36.
Janus kinase 2 (Jak2) protein tyrosine kinase plays an important role in interleukin-3– or granulocyte–macrophage colony-stimulating factor–mediated signal transduction pathways leading to cell proliferation, activation of early response genes, and inhibition of apoptosis. However, it is unclear whether Jak2 can activate these signaling pathways directly without the involvement of cytokine receptor phosphorylation. To investigate the specific role of Jak2 in the regulation of signal transduction pathways, we generated gyrase B (GyrB)–Jak2 fusion proteins, dimerized through the addition of coumermycin. Coumermycin induced autophosphorylation of GyrB–Jak2 fusion proteins, thus bypassing receptor activation. Using different types of chimeric Jak2 molecules, we observed that although the kinase domain of Jak2 is sufficient for autophosphorylation, the N-terminal regions are essential for the phosphorylation of Stat5 and for the induction of short-term cell proliferation. Moreover, coumermycin-induced activation of Jak2 can also lead to increased levels of c-myc and CIS mRNAs in BA/F3 cells stably expressing the Jak2 fusion protein with the intact N-terminal region. Conversely, activation of the chimeric Jak2 induced neither phosphorylation of Shc or SHP-2 nor activation of the c-fos promoter. Here, we showed that the GyrB–Jak2 system can serve as an excellent model to dissect signals of receptor-dependent and -independent events. We also obtained evidence indicating a role for the N-terminal region of Jak2 in downstream signaling events.  相似文献   
37.
Retinal endothelial cells are believed to play an important role in the pathogenesis of diabetic retinopathy. In previous studies, we and others demonstrated that glucose transporter 1 (GLUT1) is downregulated in response to hyperglycemia. Increased oxidative stress is likely to be the event whereby hyperglycemia is transduced into endothelial cell damage. However, the effects of sustained oxidative stress on GLUT1 regulation are not clearly established. The objective of this study is to evaluate the effect of increased oxidative stress on glucose transport and on GLUT1 subcellular distribution in a retinal endothelial cell line and to elucidate the signaling pathways associated with such regulation. Conditionally immortalized rat retinal endothelial cells (TR-iBRB) were incubated with glucose oxidase, which increases the intracellular hydrogen peroxide levels, and GLUT1 regulation was investigated. The data showed that oxidative stress did not alter the total levels of GLUT1 protein, although the levels of mRNA were decreased, and there was a subcellular redistribution of GLUT1, decreasing its content at the plasma membrane. Consistently, the half-life of the protein at the plasma membrane markedly decreased under oxidative stress. The proteasome appears to be involved in GLUT1 regulation in response to oxidative stress, as revealed by an increase in stabilization of the protein present at the plasma membrane and normalization of glucose transport following proteasome inhibition. Indeed, levels of ubiquitinated GLUT1 increase as revealed by immunoprecipitation assays. Furthermore, data indicate that protein kinase B activation is involved in the stabilization of GLUT1 at the plasma membrane. Thus subcellular redistribution of GLUT1 under conditions of oxidative stress is likely to contribute to the disruption of glucose homeostasis in diabetes.  相似文献   
38.
Nanosecond pulsed electric fields (nsPEFs) are increasingly recognized as a novel and unique tool in various life science fields, including electroporation and cancer therapy, although their mode of action in cells remains largely unclear. Here, we show that nsPEFs induce strong and transient activation of a signaling pathway involving c-Jun N-terminal kinase (JNK). Application of nsPEFs to HeLa S3 cells rapidly induced phosphorylation of JNK1 and MKK4, which is located immediately upstream of JNK in this signaling pathway. nsPEF application also elicited increased phosphorylation of c-Jun protein and dramatically elevated c-jun and c-fos mRNA levels. nsPEF-inducible events downstream of JNK were markedly suppressed by the JNK inhibitor SP600125, which confirmed JNK-dependency of these events in this pathway. Our results provide novel mechanistic insights into the mode of nsPEF action in human cells.  相似文献   
39.
40.
Summary The plasmid clone which contains human salivary amylase cDNA was used to detect restriction fragment length polymorphisms (RFLPs). After double digestion with Pst 1 and Bam H1, a polymorphism with two alleles was observed. In Japanese, frequencies of these alleles, tentatively called 5.7kb and 6.5kb fragment alleles, are 0.55 and 0.45, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号