首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13572篇
  免费   1149篇
  国内免费   9篇
  2022年   71篇
  2021年   165篇
  2020年   102篇
  2019年   133篇
  2018年   172篇
  2017年   179篇
  2016年   266篇
  2015年   417篇
  2014年   499篇
  2013年   772篇
  2012年   747篇
  2011年   745篇
  2010年   460篇
  2009年   465篇
  2008年   697篇
  2007年   697篇
  2006年   705篇
  2005年   690篇
  2004年   663篇
  2003年   634篇
  2002年   612篇
  2001年   375篇
  2000年   400篇
  1999年   390篇
  1998年   160篇
  1997年   120篇
  1996年   125篇
  1995年   128篇
  1994年   122篇
  1993年   140篇
  1992年   306篇
  1991年   204篇
  1990年   218篇
  1989年   218篇
  1988年   316篇
  1987年   186篇
  1986年   165篇
  1985年   148篇
  1984年   125篇
  1983年   97篇
  1982年   70篇
  1981年   72篇
  1980年   47篇
  1979年   85篇
  1978年   65篇
  1977年   51篇
  1976年   51篇
  1975年   50篇
  1974年   63篇
  1972年   54篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Culture-dependent and -independent techniques were combined to characterize the physiological properties and the ecological impacts of culture-resistant phylotypes of thermophiles within the order Aquificales from a subsurface hot aquifer of a Japanese gold mine. Thermophilic bacteria phylogenetically associated with previously uncultured phylotypes of Aquificales were successfully isolated. 16S ribosomal DNA clone analysis of the entire microbial DNA assemblage and fluorescence in situ whole-cell hybridization analysis indicated that the isolates dominated the microbial population in the subsurface aquifer. The isolates were facultatively anaerobic, hydrogen- or sulfur/thiosulfate-oxidizing, thermophilic chemolithoautotrophs utilizing molecular oxygen, nitrate, ferric iron, arsenate, selenate, and selenite as electron acceptors. Their versatile energy-generating systems may reflect the geochemical conditions of their habitat in the geothermally active subsurface gold mine.  相似文献   
992.
We report that the intraperitoneal injection of Clostridium perfringens alpha-toxin into mice induces ascites. This phenomenon was monitored by measuring fluid volume and analyzing hematologic data. The mouse toxicity test provides a simple and useful model for examining C. perfringens alpha-toxin-induced vascular permeability.  相似文献   
993.
In order to examine whether bone marrow transplantation (BMT) has genotoxic effects in vivo, mutant frequencies (Mfs) at the hypoxanthine-guanine phosphoribosyl transferase (Hprt) locus were evaluated. Thirty-seven pediatric patients who had received allogeneic BMT for various hematologic or immunologic disorders were enrolled. Nine out of the 37 patients (24.3%) were found to have Hprt-Mfs exceeding the 99% confidence limits calculated from observation of healthy controls. Among factors including gender, primary disease of the patient, donor-recipient histocompatibility relationship, age of donor, and total body irradiation as conditioning regimen, none was associated with an increased Hprt-Mf. In three patients who had chimerism in their peripheral blood after BMT, Hprt mutant clones turned out to be of donor- or recipient-origin. Mfs at the T-cell receptor (TCR) locus were examined in 28 patients. Four patients (14.3%) were found to have increased TCR-Mfs. However, there were not any patients who showed elevation of both Hprt-and TCR-Mfs. These data, taken together, suggest that BMT may cause genotoxicity in vivo in some patients.  相似文献   
994.
Nakamura M  Zhou XZ  Kishi S  Lu KP 《FEBS letters》2002,514(2-3):193-198
Pin2/TRF1 was independently identified as a telomeric DNA-binding protein (TRF1) that regulates telomere length, and as a protein (Pin2) that can bind the mitotic kinase NIMA and suppress its lethal phenotype. We have previously demonstrated that Pin2/TRF1 levels are cell cycle-regulated and its overexpression induces mitotic arrest and then apoptosis. This Pin2/TRF1 activity can be potentiated by microtubule-disrupting agents, but suppressed by phosphorylation of Pin2/TRF1 by ATM; this negative regulation is critical in mediating for many, but not all, ATM-dependent phenotypes. Interestingly, Pin2/TRF1 specifically localizes to mitotic spindles in mitotic cells and affects the microtubule polymerization in vitro. These results suggest a role of Pin2/TRF1 in mitosis. However, nothing is known about whether Pin2/TRF1 affects the spindle function in mitotic progression. Here we characterized a new Pin2/TRF1-interacting protein, EB1, that was originally identified in our yeast two-hybrid screen. Pin2/TRF1 bound EB1 both in vitro and in vivo and they also co-localize at the mitotic spindle in cells. Furthermore, EB1 inhibits the ability of Pin2/TRF1 to promote microtubule polymerization in vitro. Given that EB1 is a microtubule plus end-binding protein, these results further confirm a specific interaction between Pin2/TRF1 and the mitotic spindle. More importantly, we have shown that inhibition of Pin2/TRF1 in ataxia-telangiectasia cells is able to fully restore their mitotic spindle defect in response to microtubule disruption, demonstrating for the first time a functional involvement of Pin2/TRF1 in mitotic spindle regulation.  相似文献   
995.
The hyperthermophilic archaeon Methanococcus jannaschii uses several non-canonical enzymes to catalyze conserved reactions in glycolysis and gluconeogenesis. A highly diverged gene from that organism has been proposed to function as a phosphoglycerate mutase. Like the canonical cofactor-independent phosphoglycerate mutase and other members of the binuclear metalloenzyme superfamily, this M. jannaschii protein has conserved nucleophilic serine and metal-binding residues. Yet the substrate-binding residues are not conserved. We show that the genes at M. jannaschii loci MJ0010 and MJ1612 encode thermostable enzymes with phosphoglycerate mutase activity. Phylogenetic analyses suggest that this gene family arose before the divergence of the archaeal lineage.  相似文献   
996.
997.
998.
The effect of ATP on calcium binding of the Ca2+-ATPase of the sarcoplasmic reticulum has not been clarified. By comparing the calcium dependence of the ATPase activity and of phosphorylation of the ATPase molecules with that of calcium binding in the absence of ATP, we show the existence of two types of regulatory site of the enzyme molecules at which ATP binding variously improves the calcium binding performance of the molecules depending on the aggregation state of the molecules and pH; the two regulatory sites bind ATP at submillimolar (0.25 mm) and millimolar (5 mm) ATP, respectively. The results are discussed based on a model of two conformational variants (A and B forms) of the chemically equivalent ATPase molecules (Nakamura, J., and Furukohri, T. (1994) J. Biol. Chem. 269, 30818-30821). For example, in the sarcoplasmic reticulum membrane at pH 7.40, submillimolar ATP converted the calcium binding manner of the A form from noncooperative (Hill number (n(H)) of approximately 1) to cooperative (n(H) approximately 2), concurrent with a decrease in the apparent calcium affinity (K(0.5)) from 2-6 to 0.1-0.3 microm. The binding of the A form became almost the same as that of the B form (n(H) approximately 2, K(0.5) approximately 0.2 microm), which was not affected by ATP. Millimolar ATP further decreased the K(0.5) of the cooperative binding of the two forms to approximately 0.05 microm. Regulation of the calcium binding performance by ATP is discussed in terms of monomeric and oligomeric pathway models.  相似文献   
999.
Sphingosine kinase (SPHK) is a key enzyme catalyzing the formation of sphingosine 1 phosphate (SPP), a lipid messenger that is implicated in the regulation of a wide variety of important cellular events through intracellular as well as extracellular mechanisms. However, the molecular mechanism of the intracellular actions of SPP remains unclear. Here we have cloned a novel sphingosine kinase-1 (SPHK1)-binding protein, RPK118, by yeast two-hybrid screening. RPK118 contains several functional domains whose sequences are homologous to other known proteins including the phox homology domain and pseudokinase 1 and 2 domains and is shown to be a member of an evolutionarily highly conserved gene family. The pseudokinase 2 domain of RPK118 is responsible for SPHK1 binding as judged by yeast two-hybrid screening and immunoprecipitation studies. RPK118 is also shown to co-localize with SPHK1 on early endosomes in COS7 cells expressing both recombinant proteins. Furthermore, RPK118 specifically binds to phosphatidylinositol 3-phosphate. These results strongly suggest that RPK118 is a novel SPHK1-binding protein that may be involved in transmitting SPP-mediated signaling into the cell.  相似文献   
1000.
We raised monoclonal antibodies against senile plaque (SP) amyloid and obtained a clone 9D2, which labeled amyloid fibrils in SPs and reacted with approximately 50/100 kDa polypeptides in Alzheimer's disease (AD) brains. We purified the 9D2 antigens and cloned a cDNA encoding its precursor, which was a novel type II transmembrane protein specifically expressed in neurons. This precursor harbored three collagen-like Gly-X-Y repeat motifs and was partially homologous to collagen type XIII. Thus, we named the 9D2 antigen as CLAC (collagen-like Alzheimer amyloid plaque component), and its precursor as CLAC-P/collagen type XXV. The extracellular domain of CLAC-P/collagen type XXV was secreted by furin convertase, and the N-terminus of CLAC deposited in AD brains was pyroglutamate modified. Both secreted and membrane-tethered forms of CLAC-P/collagen type XXV specifically bound to fibrillized Abeta, implicating these proteins in beta-amyloidogenesis and neuronal degeneration in AD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号