全文获取类型
收费全文 | 8093篇 |
免费 | 607篇 |
国内免费 | 11篇 |
专业分类
8711篇 |
出版年
2023年 | 23篇 |
2022年 | 52篇 |
2021年 | 103篇 |
2020年 | 66篇 |
2019年 | 98篇 |
2018年 | 122篇 |
2017年 | 118篇 |
2016年 | 188篇 |
2015年 | 292篇 |
2014年 | 359篇 |
2013年 | 459篇 |
2012年 | 492篇 |
2011年 | 508篇 |
2010年 | 308篇 |
2009年 | 326篇 |
2008年 | 445篇 |
2007年 | 440篇 |
2006年 | 471篇 |
2005年 | 429篇 |
2004年 | 450篇 |
2003年 | 424篇 |
2002年 | 388篇 |
2001年 | 195篇 |
2000年 | 183篇 |
1999年 | 159篇 |
1998年 | 97篇 |
1997年 | 60篇 |
1996年 | 57篇 |
1995年 | 67篇 |
1994年 | 69篇 |
1993年 | 61篇 |
1992年 | 128篇 |
1991年 | 128篇 |
1990年 | 108篇 |
1989年 | 88篇 |
1988年 | 86篇 |
1987年 | 73篇 |
1986年 | 66篇 |
1985年 | 59篇 |
1984年 | 50篇 |
1983年 | 37篇 |
1982年 | 43篇 |
1981年 | 32篇 |
1980年 | 32篇 |
1979年 | 32篇 |
1978年 | 23篇 |
1977年 | 30篇 |
1976年 | 23篇 |
1975年 | 20篇 |
1972年 | 20篇 |
排序方式: 共有8711条查询结果,搜索用时 0 毫秒
81.
Dispersal failure contributes to plant losses in NW Europe 总被引:1,自引:0,他引:1
Wim A. Ozinga Christine Römermann Renée M. Bekker reas Prinzing Wil L. M. Tamis Joop H. J. Schaminée Stephan M. Hennekens Ken Thompson Peter Poschlod Michael Kleyer Jan P. Bakker Jan M. van Groenendael 《Ecology letters》2009,12(1):66-74
The ongoing decline of many plant species in Northwest Europe indicates that traditional conservation measures to improve the habitat quality, although useful, are not enough to halt diversity losses. Using recent databases, we show for the first time that differences between species in adaptations to various dispersal vectors, in combination with changes in the availability of these vectors, contribute significantly to explaining losses in plant diversity in Northwest Europe in the 20th century. Species with water- or fur-assisted dispersal are over-represented among declining species, while others (wind- or bird-assisted dispersal) are under-represented. Our analysis indicates that the 'colonization deficit' due to a degraded dispersal infrastructure is no less important in explaining plant diversity losses than the more commonly accepted effect of eutrophication and associated niche-based processes. Our findings call for measures that aim to restore the dispersal infrastructure across entire regions and that go beyond current conservation practices. 相似文献
82.
Hydrobiologia - Cellular pH estimated from cell extract pH and the ion compositions of major inorganic ions (Na+, NH4 +, K+, Mg2+, Ca2+,Cl−, Br−, NO3 −, SO4 2−) were studied... 相似文献
83.
Molecular mapping of QTLs for resistance to Gibberella ear rot, in corn, caused by Fusarium graminearum. 总被引:1,自引:0,他引:1
M Liakat Ali Jeff H Taylor Liu Jie Genlou Sun Manilal William Ken J Kasha Lana M Reid K Peter Pauls 《Génome》2005,48(3):521-533
Gibberella ear rot, caused by the fungus Fusarium graminearum Schwabe, is a serious disease of corn (Zea mays) grown in northern climates. Infected corn is lower yielding and contains toxins that are dangerous to livestock and humans. Resistance to ear rot in corn is quantitative, specific to the mode of fungal entry (silk channels or kernel wounds), and highly influenced by the environment. Evaluations of ear rot resistance are complex and subjective; and they need to be repeated over several years. All of these factors have hampered attempts to develop F. graminearum resistant corn varieties. The aim of this study was to identify molecular markers linked to the genes for resistance to Gibberella ear rot. A recombinant inbred (RI) population, produced from a cross between a Gibberella ear rot resistant line (CO387) and a susceptible line (CG62), was field-inoculated and scored for Gibberella ear rot symptoms in the F4, F6, and F7 generations. The distributions of disease scores were continuous, indicating that resistance is probably conditioned by multiple loci. A molecular linkage map, based on segregation in the F5 RI population, contained 162 markers distributed over 10 linkage groups and had a total length of 2237 cM with an average distance between markers of 13.8 cM. Composite interval mapping identified 11 quantitative trait loci (QTLs) for Gibberella ear rot resistance following silk inoculation and 18 QTLs following kernel inoculation in 4 environments that accounted for 6.7%-35% of the total phenotypic variation. Only 2 QTLs (on linkage group 7) were detected in more than 1 test for silk resistance, and only 1 QTL (on linkage group 5) was detected in more than 1 test for kernel resistance, confirming the strong influence of the environment on these traits. The majority of the favorable alleles were derived from the resistant parent (CO387). The germplasm and markers for QTLs with significant phenotypic effects may be useful for marker-assisted selection to incorporate Gibberella ear rot resistance into commercial corn cultivars. 相似文献
84.
Tumor suppressor in lung cancer (TSLC)1 suppresses epithelial cell scattering and tubulogenesis 总被引:3,自引:0,他引:3
Masuda M Kikuchi S Maruyama T Sakurai-Yageta M Williams YN Ghosh HP Murakami Y 《The Journal of biological chemistry》2005,280(51):42164-42171
The tumor suppressor in lung cancer 1 (TSLC1/IGSF4) encodes an immunoglobulin-superfamily cell adhesion molecule whose cytoplasmic domain contains a protein 4.1-binding motif (protein 4.1-BM) and a PDZ-binding motif (PDZ-BM). Loss of TSLC1 expression is frequently observed in advanced cancers implying its involvement in tumor invasion and/or metastasis. Using Madin-Darby canine kidney cells expressing a full-length TSLC1 or various cytoplasmic deletion mutants of TSLC1, we examined the role of TSLC1 in epithelial mesenchymal transitions during the hepatocyte growth factor (HGF)-induced tubulogenesis and cell scattering. In a three-dimensional culture, the full-length TSLC1, which was localized to the lateral membrane of Madin-Darby canine kidney cysts, inhibited HGF-induced tubulogenesis. In contrast, the mutants lacking either the protein 4.1-BM or the PDZ-BM abolished the inhibitory effect on tubulogenesis. In addition, these mutants showed aberrant subcellular localization indicating that lateral localization is correlated with the effect of TSLC1. In a two-dimensional culture, the full-length TSLC1, but not the mutants lacking the protein 4.1-BM or the PDZ-BM, suppressed HGF-induced cell scattering. Furthermore, the cells expressing full-length TSLC1 retained E-cadherin-based cell-cell adhesion even after being treated with HGF. These cells showed prolonged activation of Rac and low activity of Rho, whereas the HGF-treated parental cells induced transient activation of Rac and sustained activation of Rho. Prolonged Rac activation caused by the expression of TSLC1 required its cytoplasmic tail. These findings, taken together, suggest that TSLC1 plays a role in suppressing induction of epithelial mesenchymal transitions by regulating the activation of small Rho GTPases. 相似文献
85.
Okuyama Y Fujii N Wakabayashi M Kawakita A Ito M Watanabe M Murakami N Kato M 《Molecular biology and evolution》2005,22(2):285-296
Interspecific hybridization is one of the major factors leading to phylogenetic incongruence among loci, but the knowledge is still limited about the potential of each locus to introgress between species. By directly sequencing three DNA regions: chloroplast DNAs (matK gene and trnL-F noncoding region), the nuclear ribosomal external transcribed spacer (ETS) region, and internal transcribed spacer (ITS) regions, we construct three phylogenetic trees of Asian species of Mitella (Saxifragaceae), a genus of perennials in which natural hybrids are commonly observed. Within this genus, there is a significant topological conflict between chloroplast and nuclear phylogenies and also between the ETS and the ITS, which can be attributed to frequent hybridization within the lineage. Chloroplast DNAs show the most extensive introgression pattern, ITS regions show a moderate pattern, and the ETS region shows no evidence of introgression. Nonuniform concerted evolution best explains the difference in the introgression patterns between the ETS region and ITS regions, as the sequence heterogeneity of the ITS region within an individual genome is estimated to be twice that of an ETS in this lineage. Significant gene conversion patterns between two hybridizing taxa were observed in contiguous arrays of cloned ETS-ITS sequences, further confirming that only ITS regions have introgressed bidirectionally. The relatively slow concerted evolution in the ITS regions probably allows the coexistence of multiple alleles within a genome, whereas the strong concerted evolution in the ETS region rapidly eliminates heterogeneous alleles derived from other species, resulting in species delimitations highly concordant with those based on morphology. This finding indicates that the use of multiple molecular tools has the potential to reveal detailed organismal evolution processes involving interspecific hybridization, as an individual locus varies greatly in its potential to introgress between species. 相似文献
86.
Murakami K Yumoto F Ohki SY Yasunaga T Tanokura M Wakabayashi T 《Journal of molecular biology》2005,352(1):178-201
Troponin and tropomyosin on actin filaments constitute a Ca2+-sensitive switch that regulates the contraction of vertebrate striated muscle through a series of conformational changes within the actin-based thin filament. Troponin consists of three subunits: an inhibitory subunit (TnI), a Ca2+-binding subunit (TnC), and a tropomyosin-binding subunit (TnT). Ca2+-binding to TnC is believed to weaken interactions between troponin and actin, and triggers a large conformational change of the troponin complex. However, the atomic details of the actin-binding sites of troponin have not been determined. Ternary troponin complexes have been reconstituted from recombinant chicken skeletal TnI, TnC, and TnT2 (the C-terminal region of TnT), among which only TnI was uniformly labelled with 15N and/or 13C. By applying NMR spectroscopy, the solution structures of a "mobile" actin-binding domain (approximately 6.1 kDa) in the troponin ternary complex (approximately 52 kDa) were determined. The mobile domain appears to tumble independently of the core domain of troponin. Ca2+-induced changes in the chemical shift and line shape suggested that its tumbling was more restricted at high Ca2+ concentrations. The atomic details of interactions between actin and the mobile domain of troponin were defined by docking the mobile domain into the cryo-electron microscopy (cryo-EM) density map of thin filament at low [Ca2+]. This allowed the determination of the 3D position of residue 133 of TnI, which has been an important landmark to incorporate the available information. This enabled unique docking of the entire globular head region of troponin into the thin filament cryo-EM map at a low Ca2+ concentration. The resultant atomic model suggests that troponin interacted electrostatically with actin and caused the shift of tropomyosin to achieve muscle relaxation. An important feature is that the coiled-coil region of troponin pushed tropomyosin at a low Ca2+ concentration. Moreover, the relationship between myosin and the mobile domain on actin filaments suggests that the latter works as a fail-safe latch. 相似文献
87.
Atsushi Tamada Satoshi Kawase Fujio Murakami Hiroyuki Kamiguchi 《The Journal of cell biology》2010,188(3):429-441
The direction of neurite elongation is controlled by various environmental cues. However, it has been reported that even in the absence of any extrinsic directional signals, neurites turn clockwise on two-dimensional substrates. In this study, we have discovered autonomous rotational motility of the growth cone, which provides a cellular basis for inherent neurite turning. We have developed a technique for monitoring three-dimensional motility of growth cone filopodia and demonstrate that an individual filopodium rotates on its own longitudinal axis in the right-screw direction from the viewpoint of the growth cone body. We also show that the filopodial rotation involves myosins Va and Vb and may be driven by their spiral interactions with filamentous actin. Furthermore, we provide evidence that the unidirectional rotation of filopodia causes deflected neurite elongation, most likely via asymmetric positioning of the filopodia onto the substrate. Although the growth cone itself has been regarded as functionally symmetric, our study reveals the asymmetric nature of growth cone motility. 相似文献
88.
Bani Mukhopadhyay Jie Liu Douglas Osei-Hyiaman Grzegorz Godlewski Partha Mukhopadhyay Lei Wang Won-Il Jeong Bin Gao Gregg Duester Ken Mackie Soichi Kojima George Kunos 《The Journal of biological chemistry》2010,285(25):19002-19011
Alcoholism can result in fatty liver that can progress to steatohepatitis, cirrhosis, and liver cancer. Mice fed alcohol develop fatty liver through endocannabinoid activation of hepatic CB1 cannabinoid receptors (CB1R), which increases lipogenesis and decreases fatty acid oxidation. Chronic alcohol feeding also up-regulates CB1R in hepatocytes in vivo, which could be replicated in vitro by co-culturing control hepatocytes with hepatic stellate cells (HSC) isolated from ethanol-fed mice, implicating HSC-derived mediator(s) in the regulation of hepatic CB1R (Jeong, W. I., Osei-Hyiaman, D., Park, O., Liu, J., Bátkai, S., Mukhopadhyay, P., Horiguchi, N., Harvey-White, J., Marsicano, G., Lutz, B., Gao, B., and Kunos, G. (2008) Cell Metab. 7, 227–235). HSC being a rich source of retinoic acid (RA), we tested whether RA and its receptors may regulate CB1R expression in cultured mouse hepatocytes. Incubation of hepatocytes with RA or RA receptor (RAR) agonists increased CB1R mRNA and protein, the most efficacious being the RARγ agonist CD437 and the pan-RAR agonist TTNPB. The endocannabinoid 2-arachidonoylglycerol (2-AG) also increased hepatic CB1R expression, which was mediated indirectly via RA, because it was absent in hepatocytes from mice lacking retinaldehyde dehydrogenase 1, the enzyme catalyzing the generation of RA from retinaldehyde. The binding of RARγ to the CB1R gene 5′ upstream domain in hepatocytes treated with RAR agonists or 2-AG was confirmed by chromatin immunoprecipitation and electrophoretic mobility shift and antibody supershift assays. Finally, TTNPB-induced CB1R expression was attenuated by small interfering RNA knockdown of RARγ in hepatocytes. We conclude that RARγ regulates CB1R expression and is thus involved in the control of hepatic fat metabolism by endocannabinoids. 相似文献
89.
Miyake K Tsukui T Shinji Y Shinoki K Hiratsuka T Nishigaki H Futagami S Wada K Gudis K Iwakiri K Yamada N Sakamoto C 《Helicobacter》2004,9(2):130-137
Background. The role of teprenone in Helicobacter pylori‐associated gastritis has yet to be determined. To investigate the effect of teprenone on inflammatory cell infiltration, and on H. pylori colonization of the gastric mucosa in H. pylori‐infected patients, we first compared the effect of teprenone with that of both histamine H2 receptor antagonists (H2‐RA) and sucralfate on the histological scores of H. pylori gastritis. We then examined its in vitro effect on H. pylori‐induced interleukin (IL)‐8 production in MKN28 gastric epithelial cells. Materials and Methods. A total of 68 patients were divided into three groups, each group undergoing a 3‐month treatment with either teprenone (150 mg/day), H2‐RA (nizatidine, 300 mg/day), or sucralfate (3 g/day). All subjects underwent endoscopic examination of the stomach before and after treatment. IL‐8 production in MKN28 gastric epithelial cells was measured by enzyme‐linked immunosorbent assay (ELISA). Results. Following treatment, the teprenone group showed a significant decrease in both neutrophil infiltration and H. pylori density of the corpus (before vs. after: 2.49 ± 0.22 vs. 2.15 ± 0.23, p = .009; 2.36 ± 0.25 vs. 2.00 ± 0.24, p = .035, respectively), with no significant differences seen in either the sucralfate or H2‐RA groups. Teprenone inhibited H. pylori‐enhanced IL‐8 production in MKN28 gastric epithelial cells in vitro, in a dose‐dependent manner. Conclusions. Teprenone may modify corpus H. pylori‐associated gastritis through its effect on neutrophil infiltration and H. pylori density, in part by its inhibition of IL‐8 production in the gastric mucosa. 相似文献
90.
Activation of Notch1 signaling in cardiogenic mesoderm induces abnormal heart morphogenesis in mouse
Watanabe Y Kokubo H Miyagawa-Tomita S Endo M Igarashi K Aisaki Ki Kanno J Saga Y 《Development (Cambridge, England)》2006,133(9):1625-1634
Notch signaling is implicated in many developmental processes. In our current study, we have employed a transgenic strategy to investigate the role of Notch signaling during cardiac development in the mouse. Cre recombinase-mediated Notch1 (NICD1) activation in the mesodermal cell lineage leads to abnormal heart morphogenesis, which is characterized by deformities of the ventricles and atrioventricular (AV) canal. The major defects observed include impaired ventricular myocardial differentiation, the ectopic appearance of cell masses in the AV cushion, the right-shifted interventricular septum (IVS) and impaired myocardium of the AV canal. However, the fates of the endocardium and myocardium were not disrupted in NICD1-activated hearts. One of the Notch target genes, Hesr1, was found to be strongly induced in both the ventricle and the AV canal of NICD1-activated hearts. However, a knockout of the Hesr1 gene from NICD-activated hearts rescues only the abnormality of the AV myocardium. We searched for additional possible targets of NICD1 activation by GeneChip analysis and found that Wnt2, Bmp6, jagged 1 and Tnni2 are strongly upregulated in NICD1-activated hearts, and that the activation of these genes was also observed in the absence of Hesr1. Our present study thus indicates that the Notch1 signaling pathway plays a suppressive role both in AV myocardial differentiation and the maturation of the ventricular myocardium. 相似文献