首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5040篇
  免费   391篇
  国内免费   7篇
  2023年   14篇
  2022年   26篇
  2021年   82篇
  2020年   50篇
  2019年   68篇
  2018年   79篇
  2017年   89篇
  2016年   145篇
  2015年   224篇
  2014年   264篇
  2013年   314篇
  2012年   368篇
  2011年   356篇
  2010年   228篇
  2009年   252篇
  2008年   329篇
  2007年   299篇
  2006年   338篇
  2005年   297篇
  2004年   300篇
  2003年   280篇
  2002年   259篇
  2001年   68篇
  2000年   42篇
  1999年   61篇
  1998年   58篇
  1997年   35篇
  1996年   32篇
  1995年   35篇
  1994年   38篇
  1993年   35篇
  1992年   43篇
  1991年   24篇
  1990年   27篇
  1989年   24篇
  1988年   15篇
  1987年   12篇
  1986年   16篇
  1985年   23篇
  1984年   24篇
  1983年   16篇
  1982年   14篇
  1981年   15篇
  1980年   18篇
  1979年   11篇
  1978年   11篇
  1977年   15篇
  1976年   11篇
  1975年   8篇
  1974年   6篇
排序方式: 共有5438条查询结果,搜索用时 31 毫秒
111.
Gene inactivation is an important tool for correlation of phenotypic and genomic data, allowing researchers to infer normal gene function based on the phenotype when the gene is impaired. New and better approaches are needed to overcome the shortfalls of existing methods for any significant acceleration of scientific progress. We have adapted the CRISPR/Cas system for use in Xenopus tropicalis and report on the efficient creation of mutations in the gene encoding the enzyme tyrosinase, which is responsible for oculocutaneous albinism. Biallelic mutation of this gene was detected in the F0 generation, suggesting targeting efficiencies similar to that of TALENs. We also find that off‐target mutagenesis seems to be negligible, and therefore, CRISPR/Cas may be a useful system for creating genome modifications in this important model organism. genesis 51:827–834. © 2013 Wiley Periodicals, Inc.  相似文献   
112.
Nucleotide sugars are the donor substrates of various glycosyltransferases, and an important building block in N- and O-glycan biosynthesis. Their intercellular concentrations are regulated by cellular metabolic states including diseases such as cancer and diabetes. To investigate the fate of UDP-GlcNAc, we developed a tracing method for UDP-GlcNAc synthesis and use, and GlcNAc utilization using 13C6-glucose and 13C2-glucosamine, respectively, followed by the analysis of mass isotopomers using LC-MS.Metabolic labeling of cultured cells with 13C6-glucose and the analysis of isotopomers of UDP-HexNAc (UDP-GlcNAc plus UDP-GalNAc) and CMP-NeuAc revealed the relative contributions of metabolic pathways leading to UDP-GlcNAc synthesis and use. In pancreatic insulinoma cells, the labeling efficiency of a 13C6-glucose motif in CMP-NeuAc was lower compared with that in hepatoma cells.Using 13C2-glucosamine, the diversity of the labeling efficiency was observed in each sugar residue of N- and O-glycans on the basis of isotopomer analysis. In the insulinoma cells, the low labeling efficiencies were found for sialic acids as well as tri- and tetra-sialo N-glycans, whereas asialo N-glycans were found to be abundant. Essentially no significant difference in secreted hyaluronic acids was found among hepatoma and insulinoma cell lines. This indicates that metabolic flows are responsible for the low sialylation in the insulinoma cells. Our strategy should be useful for systematically tracing each stage of cellular GlcNAc metabolism.Protein glycosylation, which is the most abundant post-translational modification, has important roles in many biological processes by modulating conformation and stability, whereas its dysregulation is associated with various diseases such as diabetes and cancer (1, 2). Glycosylation is regulated by various factors including glucose metabolism, the availability and localization of nucleotide sugars, and the expression and localization of glycosyltransferases (3, 4). Thus, ideally all of these components should be considered when detecting changes in a dynamic fashion; namely, it is necessary not only to take a snapshot but also to make movies of the dynamic changes in glycan metabolism.Glucose is used by living cells as an energy source via the glycolytic pathway as well as a carbon source for various metabolites including nucleotide sugars (e.g. UDP-GlcNAc and CMP-NeuAc). These nucleotide sugars are transported into the Golgi apparatus, and added to various glycans on proteins. UDP-GlcNAc is the donor substrate for N-acetylglucosaminyl (GlcNAc)1 transferases; alternatively, it is used in the cytosol for O-GlcNAc modification (i.e. O-GlcNAcylation) of intracellular proteins (5). The UDP-GlcNAc synthetic pathway is complex as it is a converging point of glucose, nucleotide, fatty acid and amino acid metabolic pathways. Thus, the metabolic flow of glucose modulates the branching patterns of N-glycans via UDP-GlcNAc concentrations because many of the key GlcNAc transferases that determine the branching patterns have widely different Km values for UDP-GlcNAc ranging from 0.04 mm to 11 mm (6, 7). Indeed, it was demonstrated that the branching formation of N-glycans in T cells is stimulated by the supply from the hexosamine pathway, whereby it regulates autoimmune reactions promoted by T cells (8).UDP-GlcNAc is also used for the synthesis of CMP-NeuAc, the donor substrate for sialyltransferases (9). The CMP-NeuAc concentration is controlled by the feedback inhibition of UDP-GlcNAc epimerase/ManNAc kinase by the final product CMP-NeuAc, and hence a high CMP-NeuAc level reduces metabolic flow in CMP-NeuAc de novo synthesis (10). However, there is still only limited information about how the levels of nucleotide sugars dynamically change in response to the environmental cues, and how such changes are reflected in the glycosylation of proteins.Stable isotope labeling is a promising approach to quantify metabolic changes in response to external cues (11, 12). For example, the use of nuclear magnetic resonance to obtain isotopomer signals of metabolically labeled molecules has been applied to trace the flux in glycolysis and fatty acid metabolism (13). An approach based on the mass isotopomers of labeled metabolites with 13C6-glucose has been developed to monitor the UDP-GlcNAc synthetic pathway (1315). The method based on the labeling ratio of each metabolite related to UDP-GlcNAc synthesis has clarified the contribution of each metabolic pathway (14). Moseley reported a novel deconvolution method for modeling UDP-GlcNAc mass isotopomers (15).Previous studies into the use of nucleotide sugars in glycosylation have relied on the specific detection of metabolically radiolabeled glycans (16). It is possible not only to deduce the glycan structures but also to trace their relative contributions to glycan synthesis without MS. On the other hand, mass isotopomer analysis of glycans labeled with stable isotope provides the ratios of labeled versus unlabeled molecules from MS spectra and structural details of the glycans. However, there are only a limited number of publications reporting the application of stable isotope labeling of glycans for monitoring the dynamics of glycans (17). To date, there have been no reports describing a systematic method for tracing cellular GlcNAc biosynthesis and use based on mass isotopomer analysis.The aim of this study was to extend our knowledge of the synthesis and metabolism of UDP-GlcNAc as well as its use in the synthesis of CMP-NeuAc, N- and O-glycans. We recently developed a conventional HPLC method for simultaneous determination of nucleotide sugars including unstable CMP-NeuAc (18). We first established an LC-MS method for isotopomer analysis of 13C6-glucose labeled nucleotide sugars for tracing UDP-GlcNAc metabolism from synthesis to use, because previous methods were not suitable for estimating UDP-GlcNAc use in CMP-NeuAc de novo synthesis (15). We also established a method for isotopomer analysis of labeled N- and O-glycan to monitor the metabolic flow of hexosamine into glycans. Using these two methods, we demonstrated the differences in the use of hexosamines between hepatoma and pancreatic insulinoma cell lines. Our approach may be useful for identifying a metabolic “bottleneck” that governs the turnover speed and patterns of cellular glycosylation, which may be relevant for various applications including glycoprotein engineering and discovery of disease biomarkers.  相似文献   
113.
piRNA (PIWI-interacting RNA) is a germ cell–specific small RNA in which biogenesis PIWI (P-element wimpy testis) family proteins play crucial roles. MILI (mouse Piwi-like), one of the three mouse PIWI family members, is indispensable for piRNA production, DNA methylation of retrotransposons presumably through the piRNA, and spermatogenesis. The biogenesis of piRNA has been divided into primary and secondary processing pathways; in both of these MILI is involved in mice. To analyze the molecular function of MILI in piRNA biogenesis, we utilized germline stem (GS) cells, which are derived from testicular stem cells and possess a spermatogonial phenotype. We established MILI-null GS cell lines and their revertant, MILI-rescued GS cells, by introducing the Mili gene with Sendai virus vector. Comparison of wild-type, MILI-null, and MILI-rescued GS cells revealed that GS cells were quite useful for analyzing the molecular mechanisms of piRNA production, especially the primary processing pathway. We found that glycerol-3-phosphate acyltransferase 2 (GPAT2), a mitochondrial outer membrane protein for lysophosphatidic acid, bound to MILI using the cells and that gene knockdown of GPAT2 brought about impaired piRNA production in GS cells. GPAT2 is not only one of the MILI bound proteins but also a protein essential for primary piRNA biogenesis.  相似文献   
114.
Although recent studies suggest that hyperlipidemia is a risk factor for osteoarthritis (OA), the link between OA and hyperlipidemia is not fully understood. As the number of activated, circulating myeloid cells is increased during hyperlipidemia, we speculate that myeloid cells contribute to the pathology of OA. Here, we characterized myeloid cells in STR/Ort mice, a murine osteoarthritis model, under hyperlipidemic conditions. Ratios of myeloid cells in bone marrow, the spleen, and peripheral blood were determined by flow cytometry. To examine the influence of the hematopoietic environment, including abnormal stem cells, on the hematopoietic profile of STR/Ort mice, bone marrow transplantations were performed. The relationship between hyperlipidemia and abnormal hematopoiesis was examined by evaluating biochemical parameters and spleen weight of F2 animals (STR/Ort x C57BL/6J). In STR/Ort mice, the ratio of CD11b+Gr1+ cells in spleens and peripheral blood was increased, and CD11b+Gr1+ cells were also present in synovial tissue. Splenomegaly was observed and correlated with the ratio of CD11b+Gr1+ cells. When bone marrow from GFP-expressing mice was transplanted into STR/Ort mice, no difference in the percentage of CD11b+Gr1+ cells was observed between transplanted and age-matched STR/Ort mice. Analysis of biochemical parameters in F2 mice showed that spleen weight correlated with serum total cholesterol. These results suggest that the increase in circulating and splenic CD11b+Gr1+ cells in STR/Ort mice originates from hypercholesterolemia. Further investigation of the function of CD11b+Gr1+ cells in synovial tissue may reveal the pathology of OA in STR/Ort mice.  相似文献   
115.
The selenium (Se)-containing antioxidant selenoneine (2-selenyl-N α,N α,N α-trimethyl-l-histidine) has recently been discovered to be the predominant form of organic Se in tuna blood. Although dietary intake of fish Se has been suggested to reduce methylmercury (MeHg) toxicity, the molecular mechanism of MeHg detoxification by Se has not yet been determined. Here, we report evidence that selenoneine accelerates the excretion and demethylation of MeHg, mediated by a selenoneine-specific transporter, organic cations/carnitine transporter-1 (OCTN1). Selenoneine was incorporated into human embryonic kidney HEK293 cells transiently overexpressing OCTN1 and zebrafish blood cells by OCTN1. The K m for selenoneine uptake was 13.0 μM in OCTN1-overexpressing HEK293 cells and 9.5 μM in zebrafish blood cells, indicating high affinity of OCTN1 for selenoneine in human and zebrafish cells. When such OCTN1-expressing cells and embryos were exposed to MeHg–cysteine (MeHgCys), MeHg accumulation was decreased and the excretion and demethylation of MeHg were enhanced by selenoneine. In addition, exosomal secretion vesicles were detected in the culture water of embryos that had been microinjected with MeHgCys, suggesting that these may be responsible for MeHg excretion and demethylation. In contrast, OCTN1-deficient embryos accumulated MeHg, and MeHg excretion and demethylation were decreased. Furthermore, Hg accumulation was decreased in OCTN1-overexpressing HEK293 cells, but not in mock vector-transfected cells, indicating that selenoneine and OCTN1 can regulate MeHg detoxification in human cells. Thus, the selenoneine-mediated OCTN1 system regulates secretory lysosomal vesicle formation and MeHg demethylation.  相似文献   
116.
Dispersal is a key process in population and evolutionary ecology. Individual decisions are affected by fitness consequences of dispersal, but these are difficult to measure in wild populations. A long‐term dataset on a geographically closed bird population, the Mauritius kestrel, offers a rare opportunity to explore fitness consequences. Females dispersed further when the availability of local breeding sites was limited, whereas male dispersal correlated with phenotypic traits. Female but not male fitness was lower when they dispersed longer distances compared to settling close to home. These results suggest a cost of dispersal in females. We found evidence of both short‐ and long‐term fitness consequences of natal dispersal in females, including reduced fecundity in early life and more rapid aging in later life. Taken together, our results indicate that dispersal in early life might shape life history strategies in wild populations.  相似文献   
117.
Producing gene fusions through genomic structural rearrangements is a major mechanism for tumor evolution. Therefore, accurately detecting gene fusions and the originating rearrangements is of great importance for personalized cancer diagnosis and targeted therapy. We present a tool, BreakTrans, that systematically maps predicted gene fusions to structural rearrangements. Thus, BreakTrans not only validates both types of predictions, but also provides mechanistic interpretations. BreakTrans effectively validates known fusions and discovers novel events in a breast cancer cell line. Applying BreakTrans to 43 breast cancer samples in The Cancer Genome Atlas identifies 90 genomically validated gene fusions. BreakTrans is available at http://bioinformatics.mdanderson.org/main/BreakTrans  相似文献   
118.
ERCC1 (excision repair cross-complementation group 1) plays essential roles in the removal of DNA intrastrand crosslinks by nucleotide excision repair, and that of DNA interstrand crosslinks by the Fanconi anemia (FA) pathway and homology-directed repair processes (HDR). The function of ERCC1 thus impacts on the DNA damage response (DDR), particularly in anticancer therapy when DNA damaging agents are employed. ERCC1 expression has been proposed as a predictive biomarker of the response to platinum-based therapy. However, the assessment of ERCC1 expression in clinical samples is complicated by the existence of 4 functionally distinct protein isoforms, which differently impact on DDR. Here, we explored the functional competence of each ERCC1 protein isoform and obtained evidence that the 202 isoform is the sole one endowed with ERCC1 activity in DNA repair pathways. The ERCC1 isoform 202 interacts with RPA, XPA, and XPF, and XPF stability requires expression of the ERCC1 202 isoform (but none of the 3 others). ERCC1-deficient non-small cell lung cancer cells show abnormal mitosis, a phenotype reminiscent of the FA phenotype that can be rescued by isoform 202 only. Finally, we could not observe any dominant-negative interaction between ERCC1 isoforms. These data suggest that the selective assessment of the ERCC1 isoform 202 in clinical samples should accurately reflect the DDR-related activity of the gene and hence constitute a useful biomarker for customizing anticancer therapies.  相似文献   
119.
Bmi1 is overexpressed in a variety of human cancers including gastrointestinal cancer. The high expression level of Bmi1 protein is associated with poor prognosis of gastrointestinal cancer patients. On the other hand, tumor-associated macrophages (TAMs) contribute to tumor growth, invasion, and metastasis by producing various mediators in the tumor microenvironment. The aim of this study was to investigate TAM-mediated regulation of Bmi1 expression in gastrointestinal cancer. The relationship between TAMs and Bmi1 expression was analyzed by immunohistochemistry and quantitative real-time PCR (qRT-PCR), and results showed a positive correlation with tumor-infiltrating macrophages (CD68 and CD163) and Bmi1 expression in cancer cells. Co-culture with TAMs triggered Bmi1 expression in cancer cell lines and enhanced sphere formation ability. miRNA microarray analysis of a gastric cancer cell line co-cultured with macrophages was conducted, and using in silico methods to analyze the results, we identified miR-30e* as a potential regulator of Bmi1 expression. Luciferase assays using miR-30e* mimic revealed that Bmi1 was a direct target for miR-30e* by interactions with the putative miR-30e* binding sites in the Bmi1 3′ untranslated region. qRT-PCR analysis of resected cancer specimens showed that miR-30e* expression was downregulated in tumor regions compared with non-tumor regions, and Bmi1 expression was inversely correlated with miR-30e* expression in gastric cancer tissues, but not in colon cancer tissues. Our findings suggest that TAMs may cause increased Bmi1 expression through miR-30e* suppression, leading to tumor progression. The suppression of Bmi1 expression mediated by TAMs may thus represent a possible strategy as the treatment of gastrointestinal cancer.  相似文献   
120.
Pancreatic fibrosis, a prominent histopathological feature of chronic pancreatitis (CP) and pancreatic ductal adenocarcinoma, is essentially a dynamic process that leads to irreversible scarring of parenchymal tissues of the pancreas. Though the exact mechanisms of its initiation and development are poorly understood, recent studies suggested that the activation of pancreatic stellate cells (PSCs) plays a critical role in eliciting such active course of fibrogenesis. Anthraquinone compounds possess anti-inflammatory bioactivities whereas its natural derivative rhein has been shown to effectively reduce tissue edema and free-radical production in rat models of inflammatory conditions. Apart from its anti-inflammatory properties, rhein actually exerts strong anti-fibrotic effects in our current in-vivo and in-vitro experiments. In the mouse model of cerulein-induced CP, prolonged administration of rhein at 50 mg/kg/day significantly decreased immunoreactivities of the principal fibrotic activators alpha-smooth muscle actin (α-SMA) and transforming growth factor-beta (TGF-β) on pancreatic sections implicating the activation of PSCs, which is the central tread to fibrogenesis, was attenuated. Consequently, the overwhelmed deposition of extracellular matrix proteins fibronectin 1 (FN1) and type I collagen (COL I-α1) in exocrine parenchyma was found accordingly reduced. In addition, the expression levels of sonic hedgehog (SHH), which plays important roles in molecular modulation of various fibrotic processes, and its immediate effector GLI1 in pancreatic tissues were positively correlated to the degree of cerulein-induced fibrosis. Such up-regulation of SHH signaling was restrained in rhein-treated CP mice. In cultured PSCs, we demonstrated that the expression levels of TGF-β-stimulated fibrogenic markers including α-SMA, FN1 and COL I-α1 as well as SHH were all notably suppressed by the application of rhein at 10 μM. The present study firstly reported that rhein attenuates PSC activation and suppresses SHH/GLI1 signaling in pancreatic fibrosis. With strong anti-fibrotic effects provided, rhein can be a potential remedy for fibrotic and/or PSC-related pathologies in the pancreas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号